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ABSTRACT
Robust autonomy can be achieved with learning frameworks that
refine robot operating procedures through guidance from human
domain experts. This work explores three capabilities required to
implement efficient learning for robust autonomy: (1) identifying
when to garner human input during task execution, (2) using active
learning to curate what guidance is received, and (3) evaluating the
tradeoff between operator availability and guidance fidelity when
deciding who to enlist for guidance. We present results from com-
pleted work on interruptibility classification of collocated people
that can be used to help in evaluating the tradeoff in (3).
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1 INTRODUCTION
Robots are increasingly deployed to domains where it is difficult
to fully anticipate needs and operating conditions in advance. To
ensure robust autonomy in such realms, it is advantageous to equip
robots with learning frameworks that refine operating procedures
from experience or through guidance from human domain ex-
perts [2]. However, it is also unreasonable to expect continuous
monitoring and feedback from humans. This work aims to accom-
plish robust autonomy through human guidance, while reducing the
expectations on a human’s time and monitoring abilities. Specif-
ically, we explore three capabilities: (1) regulating autonomy to
identify safety-critical moments in a robot’s task execution when
assistance might be necessary (when), (2) using active learning
to proactively sample demonstrations from humans in order to
regain and improve autonomy (what), and (3) soliciting help from
those humans that are likely to be available and provide the high-
est fidelity of guidance at the moment of need (who). We address
when and what to improve robot autonomy over time by allowing
robots to learn and refine its operating procedures. We tackle what
and who to make the learning process efficient by asking the right
questions to the right person at the right time.

Regulating Autonomy (When). Our goal is to equip robots with
the ability to autonomously identify safety-critical task situations
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where it should seek human guidance under uncertainty. Con-
cretely, assume a task plan that requires the press of a button and
consider a situation where the robot is uncertain if it is in the state
where the button should be pressed. In one scenario, if pressing
the button initiates a dangerous mechanism, the robot should halt
execution and seek guidance. However, in another scenario, if press-
ing the button kills a dangerous mechanism about to run wild, the
robot should proceed even without guidance. Prior works address
components of this problem with logic-based formulations [6] that
provably halt and confidence-based formulations [3] that allow
execution under uncertainty. We will explore the tradeoffs between
such approaches when applied to the above situation (and others).

Improving Autonomy (What). Our goal is to gather information
efficiently when refining the robot’s task models from interaction
with a human: a goal best accomplished through active learning.
We plan to leverage extensive work on intrinsic motivation in robot-
ics [5] and results from self-exploration for affordance learning [4]
to tailor the content of each interaction to derive the most gains in
task model refinement through guidance.

Operator Selection(Who). Our goal is to contact the right person
at the right time. We assume that the robot can contact either
remote users or collocated people, and that there are tradeoffs
to encounters with each class of person. Specifically, we assume
that remote humans are always available but provide low fidelity
input, while collocated people are not always available but provide
high fidelity input. Our goal, therefore, is to apply an arbitration
mechanism to evaluate these tradeoffs when choosing the correct
human for guidance at the time of need.

The work so far has been focused on operator selection for
robots soliciting help. Such requests are likely to interrupt humans,
causing a disturbance. These disturbances can be ameliorated with
appropriate timing: a notion captured by interruptibility [9]. The
interruptibility of a person is high if theymight be amenable to an in-
terruption, and low otherwise. By enabling robots to autonomously
classify human interruptibility, we allow the creation of the mecha-
nism of choosing who to seek for guidance.

2 INTERRUPTIBILITY
We first introduce a framework where we identified features that
can be useful for interruptibility classification and a model that
remained robust to noise in the features [1]. Then, we present
evaluations of the framework in a user study designed to gauge
the validity of the model’s classification. We found that the robot
using our framework interrupted humans at appropriate moments
more often, which has implications on human task performance
and subsequent human-robot interaction during the interruptions.

Features. Combining prior work on human engagement detec-
tion [7] with interruptibility research [9], we hypothesized that
interruptibility can be estimated using features that describe the

https://doi.org/10.1145/3173386.3176921
https://doi.org/10.1145/3173386.3176921


HRI ’18 Companion, March 5–8, 2018, Chicago, IL, USA Siddhartha Banerjee and Sonia Chernova

Figure 1: Interruptibility classification framework.

Figure 2: Visualization of our detected features

person state, and those that describe the interruption context (Fig. 1).
We defined the person’s state as their body position and orienta-
tion, their gaze, and their projected audible cues. Context has been
defined to include the task, the environment, and the relationships
between these [9]; we considered environment (or scene) context
and proposed that the objects that a person is interacting with can
serve as useful cues to the full interruption context. For example,
an individual nursing a coffee mug in a lounge is more interruptible
than an individual using a laptop in the same lounge. We focused
on objects because object recognition is widely available on robots.

Model. We primarily considered temporal models for interrupt-
ibility classification1. We hypothesized, in particular, that the class
of discriminative temporal models called Latent-Dynamic Condi-
tional Random Fields (LDCRFs) [8] are well suited to the task.

Feature & Model Evaluation. We collected a dataset of scenes
common to a kitchen area to test our three hypotheses. In the
dataset, we constructed different sets of the social cue features
such that the sets made a tradeoff between providing models with
more information at the cost of more noise. We found that (1) the
LDCRF consistently outperformed all other models and improved
its classification accuracy with more social cue features despite the
added noise, (2) the social cue features are relevant to interruptibility
classification because the LDCRF achieved an average MCC2 score
of 0.9 when provided with all the social cues, and (3) adding context
cues with objects greatly improved classification for the LDCRF,
with average MCC scores increasing by 0.03 to 0.08 points.

Study Design. We designed a between-subjects user study where
the robot interrupted participants in amockmanufacturing environ-
ment either randomly (RND) or intelligently using the classification
framework (INT). Participants (14 Male, 14 Female, aged 22–29)
were intermittently given build tasks through a tablet, but were free
1Non-temporal models such as Random Forests (RF), SVMs, kNN, and Multi-Layer
Perceptrons (MLP)were also evaluated.We found that their consistency in classification
across multiple timesteps was low, despite promising accuracies with RF & MLP.
2Matthew’s Correlation Coefficient: ranges from -1 to 1; 1 as perfect & 0 as random.

Figure 3: Results. Asterisks indicate level of statistical signif-
icance: * p ≤ 0.05, ** p ≤ 0.01, ***p ≤ 0.001.
otherwise. When interrupting, the robot requested assistance with
its own build task, which the participants could choose to ignore.
In the INT condition, we adapted our framework for autonomous
interruptibility classification to use features from the output of five
deep networks (Fig. 2). The LDCRF was then trained on annotated
interruptibility labels of participants in pilot studies and in RND.

Study Results. We found that the framework significantly in-
creased the likelihood of robot interruptions when participants
were free (Fig. 3a). Additionally although we found that there were
no significant differences in participant performance, participants
surprisingly reported significantly more workload in INT than in
RND (Fig. 3b). This result is likely because robot interruptions in
INT gave participants less free time. Despite the higher workload,
participants still reported the robot as more considerate in INT than
in RND (Fig. 3c), with many in INT attributing considerateness to
robot nonverbal behaviors, which were the same across conditions.

3 FUTUREWORK
We glean two insights from our results: (1) interruptibility classifi-
cation is important not only for efficient learning, but equally so for
improving the social aspects of interactions, and (2) our operator
selection (who) mechanism might require more nuance than our
naïve expectation of ideal interruptions during free time would
have us believe. Future research will elaborate on this.

Meanwhile, we are also focused on researching different task
representations to evaluate the regulation (when) and the improve-
ment (what) of autonomy. We plan to explore algorithms for both
capabilities in toy simulation domains before we present results by
executing the developed algorithms on our mobile robot.
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