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ABSTRACT
We designed and conducted a user study in which we had to collect
data, train a model, and analyze the effects of the model on specific
performance metrics, all while obscuring the true nature of our
study. We examine the importance of (1) model evaluation and
selection, (2) proper participant motivation and instruction, and (3)
active control of confounding factors. In this paper, we present an
account of our experiences, some of our ad hoc solutions, and the
lessons that we think are valuable for the HRI community.

1 INTRODUCTION
In this work, we examine the steps we took to design a user study for
evaluating the effects of interruptibility-aware behavior in robots,
and the setbacks that we encountered along the way. We begin by
introducing the research questions that the study sought to answer.
We then detail the final study procedure in order to provide a more
specific context for our setbacks and lessons learned. Finally, we
explore three key issues we encountered, along with insights for
identifying and resolving those issues more generally.

Our research seeks to develop interruptibility-awareness in robots,
and to evaluate the effects of this capability on human task perfor-
mance, robot task performance, and on the human’s interpretation
of the robot’s social aptitude. Specifically, we focus on the following
research questions:

RQ1 Can an integrated system be developed to accurately esti-
mate human interruptibility online on a robot platform?

RQ2 How does interruptibility-aware robot behavior affect hu-
man task performance when a robot regularly needs assis-
tance?

RQ3 How does interruptibility-aware robot behavior affect ro-
bot task performance when relying on humans for assis-
tance?

RQ4 Does a robot appear more socially adept if it interrupts
humans at appropriate moments?

In order to evaluate these questions, we conducted a user study
in which human participants took part in a mock manufactur-
ing assembly activity. Participants were given their own construc-
tion tasks while a robot with tasks of its own would occasionally
interrupt them to request assistance. The study was conducted
between-subjects and had three conditions in which we varied the
mechanism used by the robot to decide an appropriate moment to
interrupt the participant.

Random interruptions (RND). the robot interrupted participants
after it waited for a random amount of time, reflecting the current
behavior of interruptibility unaware robots.
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Figure 1: The robot interrupts a participant in a building task.

Wizard-of-oz interruptions (WOZ). the robot interrupted partic-
ipants when a human (wizard) signaled it was an appropriate time.
The wizard used the video stream from the robot’s camera and was
instructed to make moment-by-moment decisions on whether to
interrupt.

Intelligent interruptions ( INT). the robot interrupted participants
based on output from an interruptibility classifier using a Latent-
Dynamic Conditional Random Field (LDCRF) that we developed in
prior work [1].

Our prior work had shown that the classification accuracy of
the LDCRF was superior to other models in classifying interrupt-
ibility on a static dataset collected from our robot; we wanted to
contextualize that success with an example of the model running
online in a user study. To accomplish this goal, we used data from
pilot studies and the RND condition to collect a dataset to train
and test the model. Our self-contained and online interruptibility
classification pipeline involved several state-of-the-art computer
vision detectors, and is visualized in Fig 2.

2 FINAL STUDY DESIGN
The final study involved 48 participants recruited via email with
6 additional participants who took part in pilot trials used to tune
build complexity, robot behavior, gather training data, and to famil-
iarize the wizards with their interface. A previous iteration of the
study involved 41 participants, though we had to abandon that de-
sign because it often encouraged undesirable participant behavior
and yielded ineffectual data. Six of the final 48 trials were excluded
from the study analysis: two due to hardware malfunction, and four

Figure 2: Perception and classification pipeline for interruptibility
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Figure 3: (a) Map of study area, (b), Sample builds for participants:
(Top) Main Build, (Bottom) Interruption Build

due to participants deviating from the study protocol (Sec. 4). The
resulting 42 participants (20 women, 22 men) were aged between 21
and 29 (Mdn = 24). Almost all participants were computer science
students at Georgia Tech, with varying levels of robotics experience.
The study took approximately 50 min, and all participants were
paid $10 USD.

2.1 Study Procedure
In the experimental task, participants took part in a mock manufac-
turing assembly activity. Participants were instructed to construct
structures (builds) out of wooden pieces (Fig. 3b), and told that their
build process would be video recorded to be used later as training
data for the robot. Additionally, participants were told that the ro-
bot was performing and studying its own builds, and that it would
occasionally enter the space to request assistance.

Pre-Study. Upon arrival, participants were briefed on the study,
completed consent forms, and filled in a pre-study questionnaire.
Nearby, to support the narrative of the robot learning to construct
builds, an experimenter could be seen “training” the robot by re-
sponding to the robot’s questions (e.g., “Is this a correct build?”).

Study Space. After the study briefing, participants entered the
building area (Fig. 3a), consisting of an enclosed space with fetch
area for retrieving build components, a work area for construction,
and a dropoff area for completed builds. A key element of the
study design is that the study schedule was split into periods of
work and leisure to ensure that participants had periods of low
and high interruptibility. To induce participants to showcase a
diverse range of natural leisure behaviours (to fully evaluate the
performance of the classifier and generalizability of our system),
the room included a TV playing muted videos, a stack of books, and
a couch. Participants were also allowed to keep their cell phones.
Overall, during breaks 64% sat on the couch, 50% used their cell
phones, 40% drank a refreshment, and 14% read a book.

For the remainder of the study period, participants alternated
between constructing builds (build) and break times (idle), while
being occasionally interrupted by the robot. Fig. 4 presents an
example timeline.

Builds. Each participant trial consisted of 3 build sessions. The
first build session was a training session during which participants
were allowed to ask questions and acclimate themselves to the task
and the robot. We do not report data from this session. Sessions 2

Figure 4: Sample timeline of a trial, arrows indicate interruptions
and 3 each consisted of two builds, with a short break in between.
Instructions for each build were provided on a tablet located on the
work table; the tablet remained blank until the designated build
time, and presented a NASA-TLX workload questionnaire each
time the participant selected that they had completed a build. The
build sessions were either 15 min or 9 min in length, and were
presented to all participants in a counterbalanced manner. The
different length build sessions were configured to provide differing
degrees of time pressure on the participant. In addition, pilot studies
sometimes indicated a significant improvement in performance due
to learning; the counterbalanced sessions were used to amortize any
effects through the difference of learning during high time pressure
and low time pressure sessions. All builds in a build session had a
time limit, and participants were shown a countdown timer 30 sec
before the end of this time limit; participants were not allowed to
work past the end of the time limit. The tablet also presented the
TLX questionnaire if participants ran out of time.

Breaks. Each trial included two break times approximately 6
min in length (differences in duration occurring due to robot inter-
ruptions), during which the tablet was taken away and the partici-
pants were invited to rest on the couch. The purpose of the break
was to expose the robot to interruptible human behavior. In both
cases, the experimenters presented fictitious excuses to the partic-
ipant for pausing the study, in one case claiming a non-existent
tracking device required adjustment, and in the other case simulat-
ing a tablet malfunction. For both breaks, experimenters explained
the pause in the experiment, invited participants to wait on the
couch, and then returned at the end of the break to “continue” the
study. Participants were told that the robot interruptions would
continue since the robot remained unaffected by the glitch.

Robot Interruptions. The robot continually entered the build-
ing area looking for assistance from the start to the end of a trial.
The schedule of these entrances was not predefined and the robot
was sent back in as soon as it returned from an interruption. The
first three robot entrances coincided with the training build session
and part of the first break; we allowed participants to ask questions
during these interruptions and do not report data from them. The
robot was equipped with a small box containing the blocks for its
builds and a tablet, which provided instructions to the robot builds
and presented a TLX questionnaire when done.

During an entrance, the robot followed the path shown in Fig. 3a.
It waited at the observation point upon entering and after waiting—
a random duration in RND, until an empirically chosen 2.5 sec of
consecutive interruptible classifications in INT, or until the wizard
sent an interruptible signal in WOZ—chose to move toward the
participant. Upon arrival, the robot verbally requested assistance
and waited for 2 min. Participants were aware of the wait duration
and could accept the interruption within the time limit by grabbing
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Figure 5: Classification timelines. We used the timelines to visualize both F1 score and a fluctuation metric (in percentage on the right)

Figure 6: PCA of data from our final and original study design.

the tablet, at which point the robot waited indefinitely until the
build was completed. If the participants did not respond in 2min, the
robot left the participant build area. Upon returning to the training
area, the robot audibly requested verification of the build (e.g., “Is
this a correct build?”) from an experimenter. The experimenter
provided a Yes/No response based on whether the interruption was
built1, prepared the next robot build, and sent the robot back in.

Post-Study. After the last build session, participants were asked
to complete a post-study questionnaire, were debriefed on the pur-
pose of the study and the deceptions that we used.

2.2 Metrics
In addition to logging data from the robot’s cameras in the RND
condition, we obtained quantitative measures of human and ro-
bot performance, and 5-point Likert scale responses to questions
of participant opinions and participant background. The quanti-
tative measures of human and robot task performance included
metrics like: builds completed, total time building or idle, number
of interruptions encountered and ignored, time taken to respond
to the robot, time taken to complete robot tasks, and percent of
appropriately- or inappropriately-timed interruptions.

Most quantitative measures were automatically logged from
timestamps on the tablet and the robot, but some discrepancies
caused by unexpected participant behavior2 were corrected using
video from the external camera. In addition to the above metrics,
we also asked participants to verbally elaborate on their choices
and reasoning during post-study debriefing.

3 LESSON 1: MODEL EVALUATION
Our work aimed to develop a fully autonomous and integrated
interruptibility classification system. Despite our prior work’s [1]
success in effective interruptibility classification using accuracy
scores, finding an appropriate model for use on the robot proved
to be more complicated than simply comparing F1 scores. In this
section, we highlight the issues we faced and our lessons from them.

3.1 Problems
Our training data for the model consisted of data from the robot
while observing participants in the RND condition of both iterations
1Participants could hear this response.
2For example, ignoring a build on the main tablet, or picking up the robot tablet and
then replacing it without completing the robot build

of our study. We annotated each participant’s moment-by-moment
interruptibility and, following our established methods, trained
LDCRF classifiers. However, despite seemingly high F1 scores, the
model was not accurate when deployed in pilots, frequently oscil-
lating between interruptibility classes for a seemingly static scene.

3.2 Solutions
Our primary solution was extensive visualization of the data and of
our model predictions. As shown in Figs. 5 and 6, we made visualiz-
ers to (1) evaluate the features provided to the model with methods
such as Principal Component Analysis (PCA) and (2) evaluate the
consistency of model predictions with timelines.

Visualizers of the features in the data from the first iteration
of our study showed us that our training data lacked diversity:
uninterruptible participants exhibited a greater diversity in feature
values post-PCA than interruptible participants. We were forced to
draw the conclusion that our initial study design did not encourage
participants to exhibit diverse leisure behaviours. As a result, we
updated the study schedule to include forced breaks and extended
periods of free time. We also made more distractor objects, such as
the TV and the couch, available in the participants’ workspace.

For evaluating and improving the model predictions, we visual-
ized the consistency in model predictions over the course of the
robot’s observations. This enabled us to devise a fluctuation metric
that we used to select a model for our study. Using the prediction
visualization, in conjunction with the feature visualizers, we found
two potential culprits for the oscillating predictions. First, one of
our object detectors had a very high false positive rate on study-
related building blocks; we switched off this detector. Second, we
recognized the value of capturing human pose for interruptibility
classification; therefore we added a pose estimator to our perception
pipeline.

In training, testing and visualizing our model, we were greatly
aided by the fact that we had implemented a processing pipeline
that could automatically derive new features from old data and
reassociate ground truth labels with them.

3.3 Insights
Model evaluation and selection was one of the most important
pieces for our user study. Unfortunately, the evaluation metrics
commonly used in machine learning (e.g., F1 score) did not prove
sufficient in providing accurate evaluations of the model by them-
selves. Instead, visualizations of the model and data, in conjunction
with an ensemble of evaluation metrics (F1 score and the fluctuation
metric) helped us to (1) adequately redesign the study, (2) improve
our classification system, and (3) pick the best model for our study.

4 LESSON 2: PARTICIPANT BEHAVIOR
We needed to employ deception in our study to avoid priming par-
ticipants into exaggerating their behaviour to showcase interrupt-
ibility. Unfortunately, the deceptions left participants with room
to interpret the rules and boundaries of the study for themselves,
leading to undesirable and even adversarial participant behavior.
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Figure 7: Examples of unexpected participant behavior. (Left) Apa-
thetic participant ignoring main task and robot task. (Right) Adver-
sarial participant hiding from the robot

4.1 Problems
There were two broad, not mutually exclusive, classes of problem-
atic participant behavior. First, participants attempted to deceive
the robot in its fictitious task, sometimes attempting to go so far as
to hide themselves from it (Fig. 7 (Right)). Second, participants were
sometimes apathetic (Fig. 7 (Left)). The problems were exacerbated
in our first iteration of the study where we had two participants
work side-by-side with the goal of having our robot interrupt the
most interruptible participant: in a notable study trial, coquettish
participants refused to interact with the robot and ignored the
instructions provided to them.

4.2 Solutions
Our experience with adversarial behavior in the first iteration of
the study engendered the following solutions:

(1) We changed our hypotheses and metrics so that we could
show effective robot behaviour with a single participant.
Recruitment became easier and it eliminated coquetry.

(2) Distractor items were introduced to occupy participants in
an acceptable manner when they were idle.

(3) We improved upon our narrative. The simulated breaks were
a key addition that allowed experimenters to interact with
participants during the course of the study.

(4) We improved our mechanisms for participant monitoring
with a webcam for observing the build area, and a method
of observing the participants’ behavior on the tablets.

(5) We questioned participants on their behavior post-study.
(6) We established a data sanitation protocol to salvage study

data via the external camera.
Finally, we updated our study protocol to include a criterion for
stopping a study session early in an effort to not waste time.

4.3 Insights
Our original study design was based on assumptions that people
would work diligently, respond to the robot in the absence of other
tasks, and most importantly, would follow instructions even with-
out the presence of experimenters. Once those assumptions were
violated, we were able to design a study that prepared for apathetic
or adversarial participants and still yielded valuable data for our
research questions. In fact, after some trials in the final design,
post-study interviews informed our quantitative data analyses by

prompting a search for evidence of self-reported effects. Finally, we
found our early-stopping criterion to be very valuable.

5 LESSON 3: UNEXPECTED CONFOUNDS
In choosing a skill-based task to measure the effects of interruptions
on task throughput, we were aware of the potential for participant
building skills to serve as a large confound in our data. However,
we had no method to ground our expectation on the skill confound.
We constructed multiple builds of varying difficulties and designed
flexible timing conditions in the first iteration of our study to allow
differing levels of build skill to dictate build times. We expected mul-
tiple participants of various skills to later control for the confound
in the data analysis.

5.1 Problems
An analysis of the data from the first iteration of the study revealed
that our control of the confounding variable of build skill had
been inadequate. The variance in our metrics due to skill level
promised to dwarf the variance in our metrics as a result of the
study condition.

5.2 Solutions
In the second iteration of the study, we imposed a stringent time
schedule on all participants. In addition, we greatly simplified the
tasks provided to the participants; assigning them only the simplest
builds. Pilot studies allowed us to verify that these changes led to a
more noticeable effect of the study condition on our metrics.

5.3 Insights
Although we were aware of the potential confound of participant
build skill, we were unable to adequately predict its effect on our
data. We were also lazy in designing around potential confounds,
instead hoping to be able to control for skill in the data analysis.
Our data from the first iteration of the study would have been
insufficient for answering our research questions, even if we hadn’t
run into problems of model evaluation and undesirable participant
behavior. Explicitly controlling for the confound of skill greatly
improved quality of our data, and allowed us to draw meaningful
conclusions to our research questions.

6 SUMMARY AND CONCLUSIONS
In order to completely avoid problems in a user study, we advise
removing both the robot and the participants from the study design.
Unfortunately, it is impossible to design a user study without both.
In this work, we reviewed three main lessons we learned from a
recent user study involving deceptions featuring an autonomous
mobile robot and confounding human participants. We examined
the importance of model evaluation and selection, proper partici-
pant motivation and instruction, and active control of confounding
factors. While it is impossible to completely solve the problems
that we encountered, we hope that our advice on how to identify,
approach, and solve these issues can prove useful to the research
community in HRI.
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