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Abstract— Solving high-level sequential decision tasks situ-
ated on physical robots is a challenging problem. Reinforcement
learning, the standard paradigm for solving sequential decision
problems, allows robots to learn directly from experience, but
is ill-equipped to deal with issues of scalability and uncertainty
introduced by real-world tasks. We reformulate the problem
representation to better apply to robot manipulation using the
relations of Object-Oriented MDPs (OO-MDPs) and the hier-
archical structure provided by Abstract MDPs (AMDPs). We
present a relation-based AMDP formulation for solving tabletop
organizational packing tasks, as well as a demonstration-
guided exploration algorithm for learning AMDP transition
functions inspired by state- and action-centric learning from
demonstration approaches. We evaluate our representation and
learning methods in a simulated environment, showing that
our hierarchical representation is suitable for solving complex
tasks, and that our state- and action-centric exploration biasing
methods are both effective and complementary for efficiently
learning AMDP transition functions. We show that the learned
policy can be transferred to different tabletop organizational
packing tasks, and validate that the policy can be realized on
a physical system.

I. INTRODUCTION

Reinforcement learning (RL) is a promising paradigm for
solving sequential decision problems, with the potential to
allow robots to learn the effects of their actions directly
through experience. However, traditional RL approaches face
many scalability challenges in complex domains, particularly
in the context of noisy or uncertain action effects. In this
work, we show how the RL paradigm can be adapted in order
to allow greater scalability, focusing specifically on domains
in which an agent must modify the environment using highly
non-deterministic actions.

Our approach builds on two existing Markov Decision
Process (MDP) formulations that have been proposed to
improve RL’s applicability to robotics domains—Object-
Oriented MDPs (OO-MDPs) [1] and Abstract MDPs (AM-
PDs) [2]. OO-MDPs reframe an MDP’s components in terms
of objects instantiated from a set of classes, representing
object-object relations and learning transition models at the
class level. The object-oriented approach improves transfer to
environments with different numbers of objects, but it strug-
gles with the large state spaces inherent to complex tasks.
AMDPs extend OO-MDPs to a hierarchical representation
that improves scalability by breaking problems into re-usable
subgoals through state projection and abstract actions.

In this work, we introduce a tabletop organizational pack-
ing task, in which a robot must put sets of items away in
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Fig. 1: A 4 item, 2 container (4I-2C) tabletop organization
packing environment.

organizational containers, using pick-and-place actions and
performing more complex manipulation such as opening and
closing containers. The combination of a) difficult-to-model
stochastic action effects that occur from situating the problem
on a robot physically interacting with its environment, and
b) the combinatorial state-space explosion that occurs from
adding new items to the environment, make this domain es-
pecially challenging and intractable to solve with traditional
RL learning methods. We show performance of both OO-
MDP and AMDP methods on this domain, and present tech-
niques for leveraging human demonstration to facilitate the
learning of complex policies. Specifically, the contributions
of this work are: (1) formulation of a tractable hierarchical
representation for organizational packing tasks, (2) develop-
ment of a novel state- and action-centric demonstration-based
method to bias exploration to learn transition functions, and
(3) realization and evaluation of a full approach combining
state- and action-centric demonstration representations to
learn transition functions and execute AMDPs. We evaluate
our approach in a simulated environment that represents
the challenges inherent to learning these tasks on a robot,
and then transfer the learned model to a physical robot.
Our results show that our approach can effectively solve
general tabletop organization and packing tasks, and that the
learned model can transfer to task environments of varying
complexity, as well as from simulation to a physical robot.

II. RELATED WORK

A number of prior representations have been proposed
that make RL more suitable to robotics domains. Object-
Oriented MDPs [1] and relational MDPs [3] are two problem



representations that formulate sequential decision problems
in terms of objects instantiated from classes. Both methods
use an object-oriented design to focus on relations between
objects, which naturally capture important agent and environ-
mental interactions in many problem domains, and allow for
re-use of transition functions and rewards across domains
with varying numbers of objects. We use OO-MDPs as a
starting point for our approach, as they provide a simpler
representation applicable to a single active agent, but OO-
MDPs alone are not sufficient for our problem. While OO-
MDPs are successfully used in simulated domains, they are
less common in real-world systems (with a few exceptions
such as [4], where the number of objects, actions, and
relations are very low); despite the generalization provided
by relations and classes, they become intractable in large
state-action spaces.

Scalability of RL techniques has been improved through
hierarchical approaches, which effectively reduce large state-
action spaces by dividing complex tasks into independently
solvable sub-problems. Abstract MDPs [2] extend OO-MDPs
to a hierarchical representation. They create a hierarchy
using abstract actions, each represented in turn by their own
AMDPs, and use state projection functions to move through
the hierarchy, controlling the size of the state space. We
base our work on AMDPs, as they provide a hierarchical
representation that includes the object-oriented environment
modeling advantages of OO-MDPs. Other hierarchical task
learning methods include hierarchical Q-learning [5], [6], [7],
Semi-MDP planning with options [8], [9], and MAXQ [10].
Each have shown significant improvements in learning and
planning time over flat representations, but present their own
challenges for defining hierarchical structure and rewards.
Hierarchical Task Networks present a non-RL hierarchical
representation which can be learned from demonstration
[11], [12], but are less suited to highly stochastic problems.

RL efficiency can also be improved by leveraging human
input, such as by biasing exploration with policies derived
from task demonstrations: a method often termed Learning
from Demonstration (LfD) [13]. We first consider state-
centric LfD approaches to sequential decision problems,
which map states to actions. The Human-Agent Transfer
(HAT) algorithm biases otherwise random exploration by
extracting general rules from demonstrations using a depth-
limited decision tree [14]. [15] provides further evidence
that decision trees, even with shallow depth, can effec-
tively learn policies for autonomous maze navigation from
human demonstrations. Alternatively, LfD includes action-
centric approaches which aim to reproduce common action
sequences. Such approaches include plan networks for char-
acterizing action sequences [16] and generating successor
actions [17], Semi-MDP-dual graphs for representing order-
ing constraints over action sequences [18], and workflow-
guided exploration [19] for creating state-agnostic action
workflows to guide exploration for reinforcement learning
over web forms. For non-sequential problems, [20] shows
the advantages of guided self-exploration for affordance
learning. We explore both state-centric exploration biasing

inspired by HAT, and action-centric exploration biasing using
a goal-centric implementation of plan networks in place of
workflows, thereby adapting workflow-guided exploration to
a robotics domain. Further, we integrate both methods in one
algorithm, showing that state- and action-centric approaches
provide complimentary exploration.

III. PROBLEM FORMULATION

We begin by describing tabletop organization and packing
as a high-level sequential decision problem, and discuss
the problem’s challenges. We then discuss our problem
representation–an AMDP hierarchy built on a relation-based
MDP formulation derived from OO-MDPs.

A. Task Description

We define a tabletop organizational packing task as an
example of a high-level sequential decision task that can be
completed by a robot. The goal of the task is to organize a set
of pickable items by packing them in manipulable containers
such as boxes and drawers. Different tabletop organizational
packing tasks are represented by different environments,
characterized by the number of items and the number of
containers in the environment. An example environment with
4 items and 2 containers (4I-2C) is shown in Figure 1, where
the goal is to sort fruits into the box and office supplies into
the drawer. The robot can achieve the goal by executing a
sequence of primitive actions, e.g. pick, place, and move,
that are performed using grasp and place calculators, motion
planning, and the robot’s controllers.

Situating this task on a physical robot introduces chal-
lenges to what could otherwise be a traditional planning
problem. First, the actions are stochastic. The robot’s prim-
itive actions do not always result in the desired behavior,
where grasp, place, and motion planning failures can arise
from object clutter, constrained spaces, perceptual noise, etc.
Other actions involving pushing, pulling, or dropping objects
involve difficult-to-model physical interactions between the
robot’s end effector and the objects, as well as between
the objects themselves. Additionally, adding an object to
the environment exponentially increases the size of the
state space due to the combinatorial explosion of item and
container positions. Further, when combining the size of the
state space with the stochastic environment, the large state-
action space introduces concerns of problem tractability. We
address these concerns by using MDP representations based
around object relations, which give some generalizability to
the state, and hierarchical structures, which allow re-use of
subgoals and transfer to other environments. We describe
these representations below. We use the 4I-2C environment
as a motivating task throughout this work, but our methods
also transfer to other environments, as shown in Section V-D.

B. OO-MDP Formulation

In this section, we describe how tabletop organi-
zation can be formalized as an OO-MDP. OO-MDPs
have the same components as traditional MDPs, i.e.
(S,A, P (s′|s, a), R(s)), where S is the set of states of the



environment, A is the set of actions the robot can take, P is
a stochastic transition function used to generate new states
given a state-action pair, and R is a reward calculated for
a given state. OO-MDPs differ from traditional MDPs in
that each of these components is reformulated based on a
set of object classes C, each described by sets of attributes.
The environment (including the agent) is fully described by
a set of objects, o ∈ O, instantiated from C. Relationships
between objects in the environment, and the agent itself, are
defined as binary relations at the class level, where a relation
Rel(oi, oj) is a Boolean function of two objects’ attributes.
For more details, see [1].

For tabletop organizational packing, our classes include:
• Item: small graspable objects (to be put organized)
• Box: large, immovable storage containers
• Lid: lids to close boxes
• Stack: stacks of drawers
• Drawer: individual drawers in a stack
• Gripper: end-effector of the robot

All of our classes have (x, y, z) position attributes, Items
have a label attribute, Boxes, Lids, Stacks, and Drawers
have dimension attributes, and Grippers have an open/closed
attribute. We ignore object orientation for Items, as our grasp
action calculates grasps directly from object point clouds. As
a simplification, we assume Boxes and Stacks have a fixed
orientation, although our state could be extended by adding
an orientation attribute to the Box and Stack class. Our set
of object relations include:
• Relative positions: relations for left of, right of,

in front of, behind, above, and below
• touching: a relation for object-object contact
• closing: a storage-specific relation representing if a Lid

is closing a Box or if a Drawer is closing a Stack
• holding: a Gripper-specific relation indicating what ob-

ject, if any, the gripper is currently grasping
We define a set of actions representing the robot’s prim-

itive actions. Each action is executable with a combination
of grasp and place calculation, motion planning, and closed-
loop control. The actions of our task include:
• grasp(object): move to an object (with motion planning

and collision detection) and close the gripper
• place(object): move to a target object (with motion

planning and collision detection) and release a held item
• move(object or direction): straight-line movement in the
xy plane that does not check for collisions, allowing the
robot to push and pull objects

• raise/lower: move the gripper up or down
• open/close: open or close the gripper
• reset: move to a home position
As with a traditional MDP, we can solve for a policy

with standard methods such as value iteration. The main
advantage of OO-MDPs is that everything is defined at the
class level, and thus once learned, the relations, transition
models, and rewards can transfer to environments with
different numbers of objects. Ideally, we can learn action
effects for each class once, and transfer this knowledge to

Environment State-space size
OO-MDP Relation-based MDP AMDP

1I-1C 1.13× 1012 9.45× 105 9.47× 105

2I-1C 4.54× 1015 1.98× 1011 9.47× 105

2I-2C 5.10× 1022 4.22× 1018 1.89× 106

3I-2C 1.84× 1026 2.32× 1027 1.89× 106

4I-2C 6.43× 1029 6.72× 1037 1.89× 106

TABLE I: State space growth for increasingly complex
tabletop organizational packing environments containing M
items to store in N containers (M I-NC). Unique state counts
for the OO-MDP formulation are calculated using a 40x15x5
discretization of the tabletop workspace. State space sizes for
the AMDP formulation are calculated as the sum of unique
states over all of the AMDPs in the task hierarchy.

new environments, re-running value iteration to generate new
policies. Unfortunately, in practice the OO-MDP formulation
for the tabletop organizational packing task is intractable
to solve even in the simplest case of storing 1 item in 1
container (1I-1C). This is due to the large proliferation of
states and the combination of stochastic effects on all of the
object attributes. We can, however, use the relations of the
OO-MDP to increase the problem’s tractability, as described
in the next section.

C. Relation-based Formulation

Since we cannot solve the OO-MDP for the 1I-1C case,
we cannot benefit from its advantages for multiple objects.
We instead develop a relation-based MDP formulation to
preserve the advantages of object-oriented relations. By
redefining the state as a vector of only relations, we signif-
icantly reduce the size of the state space while maintaining
the relational information required to model the changes the
robot can effect on the environment. This also generalizes
across similar states, and discretizes the state space.

OO-MDPs represent transition functions as effects on ob-
ject attributes. Since our new state does not directly contain
the object attributes, we instead redefine the transition func-
tion to take the form P ([Rel0(o

′
0, o
′
1), . . . , Rell(o

′
m, o

′
n)] |

[Rel0(o0, o1), . . . , Rell(om, on)], a), i.e. a direct mapping
from relations to relations.

Even when using binary relations, the problem is still
susceptible to combinatorial explosion from adding more
objects. Table I shows the number of states for tabletop
organizational packing environments under different repre-
sentations with increasing numbers of objects. We note that
all of these states are not necessarily reachable, and not
all states may come up during execution, but the table still
shows the trend of increasing state-space size. We find that
our flat relation-based MDP formulation becomes intractable
around the 2I-2C case. In the following section, we show how
AMDPs can be used to improve scalability while maintaining
the benefits of the relation-based representation.

D. AMDP Formulation

We extend our relation-based MDP formulation to
AMDPs [2], creating a hierarchical representation of the



Fig. 2: 4I-2C AMDP hierarchy used for all experiments. All
AMDPs at the bottom levels of each hierarchy include only
primitive actions. Each AMDP takes an Item or a list of
Items as a parameter to ground which Items are used in the
state projection function F̃ (s).

tabletop organizational packing task. AMDPs have the
same components as traditional MDPs, with two additions,
resulting in the tuple1 (S̃, Ã, P̃ (s̃′|s̃, ã), R̃(s̃), F̃ (s)).
First, the action set Ã is extended to include abstract
actions. Each abstract action represents a subgoal,
which corresponds to another AMDP, thus creating a
hierarchy. As an example, we define an AMDP for
storing an item in a drawer with an abstract action set Ã =
{openDrawer,closeDrawer,placeItemInDrawer}.
We define the abstract actions each as AMDPs with primitive
action sets containing all of the actions listed in III-B.

Second, AMDPs include a state projection function
F (s) → s̃, which projects the full state of the environment
(in our case, the set of relations listed in Section III-B) to
a set of elements relevant to the subgoal represented by the
AMDP. For our example of storing an item in a drawer,
the state projection functions for the openDrawer and
closeDrawer AMDPs remove any relations not involving
the Gripper and the Drawer objects, the projection func-
tion for the placeItemInDrawer AMDP removes any
relations not involving the Gripper, the Item to be placed,
and the Drawer objects, and the projection function for the
storeItemInDrawer AMDP at the top of the hierarchy
contains only two relations: a projection of the Item-Drawer
spatial relations to a new relation item in drawer, and the
drawer closing stack relation.

This formulation allows us to reduce any tabletop organi-
zational packing task to the 1I-1C case. Better yet, we can
reduce the problem to subgoals of the 1I-1C case, as with
the store item in drawer example given above. Currently, the
hierarchies are specified by hand. The full hierarchy for the
4I-2C case used in our experiments is shown in Figure 2. To
solve the AMDP hierarchy for a policy, each AMDP can be
solved independently using value iteration.

The transition functions for AMDPs at the lowest level
of the hierarchy are difficult to specify, as they involve exe-
cution of the many primitive actions. We propose a method
for learning these transition functions through exploration
guided by demonstrations. AMDPs at the higher levels of our
hierarchy (organizeItems, storeItemsInDrawer,
and storeItemsInBox) contain only abstract actions and
small states. As such, defining their transition functions by

1Variables with tildes indicate components of an AMDP, to disambiguate
them from components of a flat MDP.

hand is trivial. Our approach learns the low-level transition
functions, which combined with the handcrafted high-level
transition functions and the AMDP hierarchy allow us to
effectively solve each AMDP and generate task policies.

IV. LEVERAGING DEMONSTRATIONS

We first describe the demonstrations required for learning
the low-level AMDP transition functions, followed by a set of
methods to learn said transition functions, and conclude with
a complete method for generating policies from the AMDPs
and demonstration data.

We perform transition function learning in a low-fidelity
simulator that represents the characteristics of the physical
environment2. We use a simulator to facilitate large-scale
extensive evaluation. We perform final validation by trans-
ferring the learned models to the physical robot, with some
refinement to account for differences not fully modeled in
the simulator (see Section V-C for details).

A. Demonstrations

One of the core benefits of our approach is that, due
to our hierarchical task decomposition, we do not need to
collect demonstrations for the full 4I-2C task. Instead, we
can simply collect demonstrations in 1I-1C environments
and generalize those demonstrations to more complex tasks.
For each demonstration, we log a list of projected state-
action pairs (F̃ (s), a) for each AMDP. For our experi-
ments, we collect full 1I-1C task demonstrations in one
environment with a Drawer (training data for openDrawer,
placeItemInDrawer, and closeDrawer) and one
environment with a Box (training data for openBox,
placeItemInBox, and closeBox).

B. Learning Transition Functions

Ideally, the robot could learn transition functions through
exhaustive exploration in the simulator. In practice, the state
space is too large to effectively learn the full task through
random exploration alone. As an alternative, we leverage task
demonstrations to learn transition functions through guided
exploration. We learn general rules from the demonstrations
to bias action selection, using either state-centric (similar
to the HAT algorithm [14]) or action-centric (similar to
workflow-guided exploration [19]) methods to explore the
relevant state-action space. We describe the state- and action-
centric methods below, followed by a description of the full
exploration algorithm given in Algorithm 1.

For state-centric action selection biasing, we train a clas-
sifier on state-action pairs (F̃ (s), a) from the demonstration
data for each AMDP, learning a mapping from states to
actions. We selected a decision tree as the classifier because
it has good recall for all of our actions, resulting in better
coverage of the state-action space. We limit the depth of the
decision tree to prevent overfitting. We also found that lo-
gistic regression and linear support vector machines (SVMs)

2We provide the simulator, as well as our problem representations,
methods, and experiments open source at https://github.com/
GT-RAIL/task_sim

https://github.com/GT-RAIL/task_sim
https://github.com/GT-RAIL/task_sim


Algorithm 1 Transition Function Learning from
Demonstration-Guided Exploration

Require: demos, sim, train seeds, episodes, mode
1: c← classifier(demos.states, demos.actions)
2: pn← planNetwork(demos)
3: T ← {}
4: steps← 0
5: episode← 0
6: s← sim.reset(train seeds[episode])
7: while episode < episodes do
8: if rand() < ε then
9: if mode is state-centric then

10: a ∼ c.predict(s)
11: else if mode is action-centric then
12: a ∼ pn.successors(s)
13: if a is None then
14: a← randomAction()
15: else
16: a← randomAction()
17: s′ ← sim.execute(a)
18: T.update(s, a, s′)
19: s← s′

20: steps← steps+ 1
21: if goalTest(s′) or steps ≥ timeout then
22: episode← episode+ 1
23: s← sim.reset(train seeds[episode])
24: steps← 0

25: return T, c, pn

performed well, and as such we include the three classifier
variants in the evaluation presented in Section V-A. During
exploration, we stochastically select actions proportional to
the classifier’s predicted probabilities over the full action set
(Algorithm 1 line 11). Thus, the algorithm selects actions
consistent with behavior observed for the current state.

For action-centric action selection biasing, we construct
plan networks [16] for each AMDP, serving as work-
flows. The nodes of a plan network consist of tuples
of (preconditions, action, effects), which are determined
from the demonstration action sequences. Nodes are con-
nected by directed edges, representing tuples encountered
in sequence in the demonstration data, with edge weights
corresponding to the frequency that these sequences are
encountered. While workflows are fully state-agnostic, plan
networks incorporate state information as preconditions and
effects. To generate more state-agnostic plan networks with-
out fully eliminating key relation information, we use only
the relations required for specifying the subtask goals as
action preconditions and effects. To select an action (Al-
gorithm 1 lines 13-15), we use the previous state, previous
action, and current state to generate a node, localize that node
within the plan network, and select an action stochastically
(proportional to the edge weights) from the node’s children
whose preconditions are satisfied by the current state. If the
current state of execution cannot be localized in the network,

Algorithm 2 AMDP Training and Task Execution

Require: amdps, sim, demos,mode
1: for amdp in amdps do
2: amdp.T, amdp.c, amdp.pn← learnT(demos)
3: amdp.π ← valueIteration(amdp)
4: s← sim.getState()
5: while not goalTest(s) do
6: amdp← amdps.root
7: a← amdp.π(amdp.F(s))
8: while not isPrimitive(a) do
9: amdp← amdps[a]

10: if s in amdp.π then
11: a← amdp.π(amdp.F(s))
12: else
13: if mode is state-centric then
14: a ∼ c.predict(s)
15: else if mode is action-centric then
16: a ∼ pn.successors(s)
17: if a is None then
18: a← randomAction()
19: s← sim.execute(a)

or if no children’s preconditions are satisfied, we select a
random action. Thus, the algorithm selects actions consistent
with commonly observed action sequences.

The full exploration algorithm, presented in Algorithm 1,
works as follows. For a given set of training environments
parameterized by random seeds train seeds and a given
number of training episodes, the algorithm repeatedly selects
and executes actions in our simulator (lines 8-26). As with
collecting demonstrations, exploration need only occur in 1I-
1C environments. Action selection is performed as a tradeoff
between demonstration-guided exploration (lines 10-15) and
random exploration (line 17), parameterized by probability ε.
After executing the selected action and observing the results
(line 18), the algorithm updates the transition function T ,
represented as a table indexed by state action pairs (s, a)
which store a frequency table of resulting states s′. A training
episode ends either when the goal is reached or an execution
timeout is exceeded, the simulator is reset to the next training
environment, and another episode begins (lines 22-26).

C. Executing AMDP Policies

We present the full algorithm for executing hierarchical
AMDP policies in Algorithm 2. The algorithm begins with
a training period for each AMDP (lines 1-3). Transition
functions are learned using the method described in Section
IV-B. We also store the classifier and plan network for
each AMPD for later use. The algorithm then solves for
the optimal (with respect to the learned transition functions)
policy for each AMDP using value iteration.

With the individual policies learned, the AMDP hierarchy
can generate primitive actions. This is accomplished by
starting at the root of the hierarchy, the organizeItems
AMDP, selecting the optimal action, and iteratively moving



down the AMDP hierarchy selecting optimal actions until a
primitive action is returned (lines 6-11). One downside to
learning transition functions through exploration is that the
algorithm may not learn a policy for every state.3 In the case
of an unseen state, we instead re-use the state- or action-
centric rules to generate an action (lines 12-18), with the
hope that it will either complete the task or guide execution
back to a region of the state space known to the policy.
Once a primitive action is selected, the algorithm executes
the action and repeats this process, restarting at the top of
the AMDP hierarchy, until the task is complete.

V. EXPERIMENTS

For consistent evaluation of transition function learning
methods and the performance of the full AMDP hierarchy,
we establish a set of demonstrations, training environments,
test environments, and an evaluation procedure. We first
create a consistent set of 20 4I-2C training environments
(train seeds ∈ [0, 19]). We next collect 20 demonstrations
performed on 1I-1C tasks within the training environments,
where the 1I-1C tasks are formed by reducing the training
environments to a single Item and a single Container (with
variants for Drawers and Boxes). The resulting demonstra-
tion data is then used, along with the training environments,
to perform transition function learning using Algorithm 1 for
each of the primitive-action AMDPs.

We perform evaluation on the training set by executing
the full AMDP hierarchy for 5 runs in each training en-
vironment using Algorithm 2 to solve the full 4I-2C task,
using the results to calculate a training environment success
rate. We also create a consistent set of 100 heldout 4I-
2C test environments (train seeds ∈ [20, 119]), on which
we execute 1 run each with the full AMDP hierarchy to
calculate a test environment success rate. For all training and
testing evaluation runs, we enforce a 100 action limit, beyond
which a run is considered a failure (an optimal solution takes
approximately 20 actions). Evaluations were performed every
10 training episodes. In the following sections, we compare
a set of exploration methods (Section V-A) and a set of
reinforcement learning methods (Section V-B).

A. Exploration Method Evaluation

We evaluate three demonstration-guided exploration meth-
ods to compare the effects of state- and action-centric explo-
ration biasing. The methods are as follows:
• State-Centric + Random (SC): Trading off using the

state-action classifier and random action selection, this
method represents purely state-centric exploration bi-
asing. We perform evaluation using a decision tree,
logistic regression, and an SVM as classifiers.

• Action-Centric + Random (AC): Trading off using the
plan network and random action selection, this method
represents purely action-centric exploration biasing.

3This can be mitigated with function approximation, but to date we have
not had success, due to difficulties in abstracting the latent factors that
govern transition dynamics (motion planning failures, etc.) from observation
in our relation-based domain.

Fig. 3: Evaluation of exploration approaches for learning the
4I-2C task over the training environments. SC results are
reported as the mean success rate achieved using the decision
tree, logistic regression, and SVM state-action models, with
shaded regions showing ±1 standard deviation. SC Base and
AC Base performed equivalently with a 13% success rate;
Rand omitted as it always produced a 0% success rate.

Fig. 4: Evaluation of exploration approaches for learning the
4I-2C task over 100 heldout test environments. Rand omitted
as it always produced a 0% success rate.

• State-Centric + Action-Centric + Random (SC+AC):
We also combine state- and action-centric exploration
biasing to determine whether they are complimentary.
To perform this method, instead of having Algorithms
1 and 2 select actions from either only the state-action
mapping or only the plan network, the algorithms flip
a coin at each loop iteration and use one approach or
the other.

Additionally, we include a random exploration (Rand)
baseline, to motivate the need for exploration-guided demon-
stration. Rand learns transition functions by always selecting
a random action. Evaluation using the full model learned over
1000 training episodes resulted in a 0% success rate for both



the training and testing environments. Random exploration
has only a 3.9% success rate at solving the 1I-1C training
environments during the exploration phase, and the policy
learned from value iteration does not sufficiently cover the
state-action space to solve the 4I-2C problem.

We also evaluate two non-exploration baselines, by using
either a state-action classifier (SC Base) or a plan net-
work (AC Base) directly for evaluation, without performing
policy learning through transition function exploration. At
evaluation time, the AMDPs directly use either the state-
action classifier or the plan network, respectively, for action
selection. As there is no exploration phase the methods’
performances do not change over the training episodes.

The training environment success rates of all methods are
shown in Figure 3, and the heldout test environment success
rates are shown in Figure 4. Our results show that learning
transition functions with demonstration-guided exploration
and using them to solve for AMDP policies greatly improves
the baseline results for all methods, in both the training
environments and when generalizing to unseen environments.

Alone, AC reaches peak performance at 66% and 62%
success in the training and test environments, respectively,
and SC reaches peak performance at 75% and 68% success.
When combined we see evidence that the state- and action-
centric methods are complimentary. SC+AC outperforms
all other exploration methods, reaching peak success rates
of 88% in the training environments and 78% in the test
environments. Of the state-centric classifiers, the decision
tree was the most successful at generalizing to the test envi-
ronments, with a 78% success rate vs. logistic regression’s
and SVM’s 73% success rates for the SC+AC method.

B. Reinforcement Learning Comparison

With SC+AC established as our best exploration method,
we evaluate its performance within various reinforcement
learning approaches, shown in Figures 5 and 6. The ap-
proaches are as follows:

• Model-Based Demonstration-Guided Exploration
(SC+AC): This approach directly uses Algorithm 1, as
in the previous section, to learn the AMDP transition
functions. This approach does not exploit the learned
policy during transition function learning.

• Model-Based Demonstration-Guided Exploration with
Exploitation (SC+AC Exploit): SC+AC with the addi-
tional tradeoff of exploiting the learned policy instead
of exploring, in proportion to a decaying ε.

• Model-Free Demonstration-Guided Exploration
(SC+AC Q-learning): A model-free implementation
of Algorithm 1 that learns a table of Q-values rather
than a transition function for each AMDP, trading off
between exploration and exploitation of the learned
policy in proportion to a decaying ε, where exploration
selects either a random action or an action from either
the state- or action-centric models.

• Model-Free Baseline (Q-learning): A standard imple-
mentation of Q-learning, where a table of Q-values

Fig. 5: Comparison of reinforcement learning approaches for
the 4I-2C task on the training environments.

Fig. 6: Comparison of reinforcement learning approaches for
the 4I-2C task on 100 heldout test environments.

is learned for each AMDP. As a baseline, exploration
consists only of randomly selected actions.

Q-learning eventually converges to approximately a 50%
training environment success rate and 40% test environ-
ment success rate after 5000 training episodes. Incorporating
demonstration-guided exploration with Q-learning decreases
convergence time by a factor of 5, with performance also
increasing to 65% and 60% in the training and test envi-
ronments, respectively. One of the fundamental downsides
to using a model-free approach with an AMDP hierarchy,
though, is that a separate Q-function must be learned for
each AMDP. In contrast, learning transition functions allows
for model re-use in AMDPs that use the same state projection
function F̃ (s) and action set Ã (e.g. for openDrawer
and closeDrawer, or for openBox and closeBox). As
such, the model-based approaches learn a successful policy
more efficiently.

SC+AC without exploitation both converged fastest and
reached the highest peak performance. This suggests that,
for the 4I-2C environment, exploration around the policies
learned from task demonstrations provides more useful infor-
mation than exploiting the policy learned thus far. The result
is consistent with the most common cause of task failure for
all of our methods: when the robot reaches a state that it has
not previously encountered, the state-action classifier or the



Method Environment
2I-1C 3I-2C 4I-2C 5I-2C

SC+AC 0.781 0.557 0.638 0.474
SC 0.784 0.465 0.336 0.312
AC 0.814 0.563 0.482 0.458

TABLE II: Success rates from transferring the learned policy
to task environments of varying difficulty. Success rates are
calculated over 1000 instances of each environment type.

plan network i unable to guide the robot back to a known
area of the state space, and the algorithm chooses actions
blindly. To further improve performance, we require either
additional exploration time, or function approximation that
can generalize to unexplored states.

SC+AC converges after approximately 42000 total ex-
ploration action executions, which is relatively quick given
the size of the state-action space. However, this is orders
of magnitude too high to reasonably perform exploration
using a physical robot. Therefore, we transfer our best model
learned in simulation and refine it on the physical robot to
perform our final validation.

C. Pysical Robot Validation

We transfer the full AMDP policy learned in simula-
tion using the SC+AC method to the physical robot and
environment shown in Figure 1. The task involves putting
office supplies into a drawer and fruit into a box. The robot
consists of a 7-DOF Kinova JACO, with a 2-finger Robotiq
85 gripper, and 3D perception from an Asus Xtion Pro
camera. We assume that the environment is fully observable,
and present the physical robot results as a proof of concept
for transfer from simulation to a real environment. We leave
the case of handling partially observable state to future
work. We first refine the transition functions by executing
the policy (with no exploration) for five iterations, updating
the transition functions to correct for any major differences
between our simulator and the real world. After re-running
value iteration, the robot can execute the complete AMDP
to solve a 4I-2C task. We show the task in its entirety in the
included supplemental video4.

D. Task Transfer

One of the main advantages of the AMDP representation
is that the hierarchical structure allows for re-use of AMDPs
at lower levels of the hierarchy to execute different high
level tasks. We evaluate this by taking the same models
trained and tested in Section V-A and executing the learned
policies to complete tasks with varying numbers of items
and containers. To further test generalization, we perform
this evaluation over 1000 unseen testing environment seeds.
The same policies can be used to complete both simpler and
more complex tasks, as shown in Table II.

4Available in high quality at https://youtu.be/11LB_wc5CGc

VI. CONCLUSION

We have successfully applied a reinforcement learning
approach to solving complex robot manipulation tasks with
stochastic effects, by controlling the size of the state-action
space with an AMDP task hierarchy built over an object-
oriented relation-based state. The approach efficiently learns
transition functions, using a novel demonstration-guided
exploration algorithm that makes use of state- and action-
centric demonstration representations, which we show to be
complimentary. After learning a model once, our approach
transfers to environments of varying complexity, and is fully
realizable on physical systems.
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