
Learning from Stories: Using Natural Communication to Train Believable Agents

Brent Harrison, Siddhartha Banerjee, and Mark O. Riedl
School of Interactive Computing, Georgia Institute of Technology

Atlanta, Georgia, USA

Abstract
In this work we introduce Quixote, a system that
allows non-programmers to train believable virtual
agents and robots using the sociocultural knowl-
edge present in stories. Quixote uses a corpus of
exemplar stories to engineer a reward function that
can be used to train virtual agents to exhibit de-
sired behaviors using reinforcement learning. We
show the effectiveness of our system with a case
study in a modified gridworld environment called
Pharmacy World. In this case study, we examine
the performance of Quixote under ideal conditions
and evaluate how humans perceive the policies that
our system produces. In addition, we examine how
Quixote performs in this environment when ambi-
guities in natural language correspondence causes
difficulty in mapping story events to agent actions.

1 Introduction
Authoring virtual agents and robots is a difficult task that re-
quires a non-trivial amount of programming knowledge to
perform. Even using a self-contained machine learning tool
to train agents and robots will require some amount of pro-
gramming/computer science knowledge. This makes it diffi-
cult for non-programmers to train virtual agents and robots.
In this work, we make this task more accessible to non-
programmers by enabling them to train virtual agents and
robots through natural communication.

Methods such as apprenticeship learning [1] or learning
from demonstration (LfD) [2] seek to make agent training
more accessible to non-programmers by allowing people to
provide a corpus of exemplar demonstrations to help the agent
learn optimal behavior. This improves on upon traditional
learning-based approaches to agent and robot training as pro-
viding these demonstrations typically does not require exten-
sive programming knowledge. These demonstrations, how-
ever, typically come in the form of complete trajectories in
the environment that the agent will be acting in, thus mak-
ing it a requirement that authors have prior knowledge of the
agent’s environment. Also, many times these demonstrations
are generated by people performing physical actions in a real
space. These types of demonstrations can be especially prob-
lematic for those with disabilities or the elderly to provide.

As such, it can still be difficult for trainers to provide demon-
strations in some cases.

In this work we introduce the idea of using a natural source
of human communication to train machine learning algo-
rithms: stories. Our system, which we call Quixote, uses sto-
ries told by humans to train virtual agents to exhibit specific
behaviors. This task is similar to that of LfD algorithms ex-
cept that our technique learns from stories told about a task
rather than from explicit demonstrations of said task. The pri-
mary difference between stories and demonstrations, as well
as the primary challenge in dealing with stories, is that sto-
ries are more unconstrained than demonstrations since au-
thors have no prior knowledge about specifics of the envi-
ronment. Also, many different stories could all correctly de-
scribe the same task, or authors could skip steps that they feel
are obvious or do not need mentioning. Further, storytelling
is non-Markovian in that some events that occur are influ-
enced by events that happened far in the past. This can make
it especially difficult to utilize story information since most
agent environments are assumed to be Markovian.

Quixote addresses many of these issues by first cleaning
an initial story corpus using the technique outlined by Li et
al [7]. This allows for Quixote to reconcile the exemplar sto-
ries with each other and fill in any gaps that may exist, which
makes learning a more manageable task. From there, Quixote
uses this new corpus to define the space of acceptable behav-
iors that is then turned into a reward function that can be used
to train reinforcement learning agents.

To explore the effectiveness of our system, we present a
case study in which we use stories to train a reinforcement
learning agent in Pharmacy World, a modified grid world in
which the agent attempts to acquire drugs from a pharmacy.
In this case study, we examine how Quixote performs un-
der ideal circumstances in which the stories told map directly
onto the environment that the agent exists in. We also perform
a user study to further evaluate the quality of the behaviors
exhibited by our system. Finally, we examine how Quixote
performs in non-ideal cases and provide insight into how our
technique performs when some aspects of the story cannot be
mapped onto the environment or it is unclear how to do so.

2 Related Work
Recently there has been an increased focus on interactive
machine learning, which seeks to augment machine learn-



ing algorithms with the ability to learn from human feedback
or demonstrations directly. The type of interactive machine
learning that is most closely related to our own work is In-
verse Reinforcement Learning (IRL). IRL attempts to learn
the reward function that best describes a corpus of policy ex-
amples [13] or policy trajectories [1]. Early work in this area
required either complete policy examples or complete trajec-
tories in order to learn. This requirement was relaxed through
the introduction of techniques such as Bayesian IRL [14] and
maximum entropy IRL [17]. There has also been work on
relaxing the assumption that all example policies or trajecto-
ries are correct [3]. Researchers have also sought to derive
behaviors from natural language commands [8; 10].

The problem that we solve with Quixote is fundamentally
different than the problem posed in IRL. While we are at-
tempting to derive reward functions based on a corpus of ex-
amples, we make different assumptions about what these ex-
amples represent, which leads to a different understanding of
how to approach the problem. In this work, we assume that
our example stories define a space of believable behaviors.
Rather than design a reward function that can reproduce all
of these examples, we are trying to create a reward function
that produces behaviors that fall within this space.

There is also a branch of research that explores how human
feedback about agent learning can be integrated into agent
training. These systems integrate human reward signals in
order to shape agent behavior [6; 5; 9]. These systems each
have users give feedback to an agent while it is learning by
means of giving it positive or negative feedback. Our work
differs from this work in that we do not seek to dynamically
shape agent behavior. Quixote aims to derive what correct
behavior is by looking at examples of desired behavior.

3 Reinforcement Learning Background
The Quixote system uses a set of exemplar stories to construct
reward functions that can be used to train reinforcement learn-
ing agents. Reinforcement learning [15] is a technique that is
used to solve a Markov decision process (MDP). A MDP is a
tuple M =< S,A, T,R, γ > where S is the set of possible
world states, A is the set of possible actions, T is a transi-
tion function T : S × A → P (S), R is the reward function
R : S ×A→ R, and γ is a discount factor 0 ≤ γ ≤ 1.

Reinforcement learning first learns a policy π : S → A,
which defines which actions should be taken in each state.
In this work, we use Q-learning [16], which uses a Q-value
Q(s, a) to estimate the expected future discounted rewards
for taking action a in state s. Reinforcement learning allows
the agent to fill in any gaps that may exist in the stories due to
authors not having prior knowledge about the agent’s environ-
ment. Thus, the agent is able to take several actions, should it
need to, in between plot points. Reinforcement learning also
allows the agent to deviate from the stories it has been told if
doing so will allow it to more efficiently reach a goal state.

4 The Quixote System
A high level flowchart of the Quixote system can be seen in
Figure 1. The Quixote system works by first taking in a set of

exemplar stories and cleaning it to filter out noise and deter-
mine the many possible ways that a task can unfold. Quixote
then converts this corpus into a trajectory tree which encodes
every story in this corpus. This tree is then used to determine
a reward function which is used to train a reinforcement learn-
ing agent to exhibit the desired behaviors. In this section, we
will describe each of these steps in greater detail.

4.1 Automatic Story Corpus Cleaning
Initial input into the Quixote system is a set of exemplar sto-
ries written in natural language about a given task. Since hu-
man authors created these stories, it is likely that this initial
corpus requires some amount of cleaning. For example, this
set of exemplar stories may contain different stories that still
correctly describe the same scenario. Also, some authors may
skip events in the story or use different language to convey the
same event. Some of these stories can also contain errors or
events that do not relate to the scenario being described. To
help mitigate these problems, we use the approach proposed
by Li et al [7] to generate a clean set of stories.

This technique first involves clustering natural language
sentences according to semantic similarity. These clusters are
referred to as events. If any sentences do not cluster into any
event then they are discarded. This way the technique helps
to reduce the noise caused by errors or variable language in
the corpus of exemplars. Second, this technique learns how
events can be ordered as well as different ways in which the
story can be told. Thus, noise as a result of misodering events
is filtered out.

4.2 Trajectory Tree Creation
The Quixote system begins by using a set of stories to derive
a trajectory tree. This is done to enable the agent to track its
progress through a story trajectory. Without this, the agent be-
comes especially susceptible to repeatable actions. In stories
it is not uncommon for authors to talk about events that are
normally repeatable (such as entering or exiting buildings). If
the agent cannot monitor its progress through the story then it
is possible that it will repeat such actions infinitely (in order
to maximize reward).

Trajectory tree creation begins with a corpus of stories that
have been cleaned using the technique described in the previ-
ous section. We then use these stories to create a trajectory
tree [4]. A trajectory tree is a structure that encodes each story
in this corpus. To create the tree we do the following for each
story in the initial corpus of exemplars. Stories are added to
the trajectory tree by iterating over each event and searching
for it in the current node’s set of children. If it exists there
then that child becomes the current node. If it is not a child of
the current node then it is added as a child and then that node
becomes the current node. Thus, every traversal of the tree
from root to node is a unique story that exists in the cleaned
corpus.

4.3 Reward Assignment
Using this trajectory tree, we assign rewards to actions or
states that exist inside the agent’s environment. In order to
do this we must first determine how events in the trajectory
tree correspond to actions or states. There is no guarantee



Automatic 
Story 

Cleaning
Exemplar

stories

Trajectory 
Tree Creation

Reward 
Assignment 8

Trajectory tree 
with events assigned 

reward values

7

5 Reinforcement 
Learning

A policy

A trajectory 
tree

Cleaned 
Exemplar

stories

Figure 1: The Quixote system workflow.

that all story events correspond to agent actions/states since
storytellers typically have no prior knowledge of the agent’s
capabilities or its environment. This means that actions may
exist in the story corpus that do not exist for the agent or there
may be actions that the agent needs to execute that do not
exist in the story corpus. The mapping between events and
actions/states can be done in many different ways, such as
manually authoring the mapping or using natural language
processing techniques to learn a mapping. We explore this
topic in greater detail in Section 6.2.

Once this mapping is made, we incorporate the tree as part
of the agent’s world state. As the agent explores its environ-
ment it also keeps track of what story events it has completed
and what story events it needs to complete in the future. Re-
wards are assigned to those actions or states that advance the
story as determined by the trajectory tree. When the agent
receives a reward, it also advances in the trajectory tree.

To our knowledge, there is no definitive technique for as-
signing reward values to story events. In all RL, agent behav-
ior is highly sensitive to the environment that the agent exists
in, making it difficult to determine a reward function that is
applicable to every environment. We can, however, weight
rewards based on their relative importance compared to other
events in the stories. Here, we define an event’s importance
as the percentage of stories from the original corpus of ex-
emplars that the event occurs in – meaning more important
events occur in more stories.

4.4 Reinforcement Learning
Once the reward function has been specified, we use rein-
forcement learning to find the optimal policy through a given
environment. By using reinforcement learning, the agent is
able to fill in any gaps that may exist in the story corpus.
These gaps exist because authors are not required to have any
prior knowledge about the agent’s capabilities or specifics of
the environment. So, what only takes one action to complete
in the story corpus may take several intermediate actions in
the MDP. Reinforcement learning allows the agent to learn
for itself the most efficient sequence of actions to move from
one plot event to another.

As mentioned in Section 4.3, we use the trajectory tree to
help determine the reward that an agent will receive. Con-
ceptually, encoding the trajectory into the world state breaks
up the learning problem into subtasks based on how the tree
branches. The subtask that the agent learns is how to op-
timally get from its current story event to one of its chil-
dren in the trajectory tree. The agent only needs to deter-
mine at any time what is the optimal policy to get to the next
story event. Therefore, the reinforcement learning agent is

iteratively solving simple MDPs rather than solving a single
complex MDP. This allows the agent is able to learn non-
Markovian behaviors (since they will be encoded in the tra-
jectory tree) and avoid infinite rewards due to rewarding re-
peatable actions (since performing the action will transition
the agent into a “different” MDP with different rewards).

This does affect the size of the MDP, however. Since the
trajectory tree determines how the MDP task is divided into
subtasks, the size of the MDP grows linearly with the num-
ber of branches in the trajectory tree. While learning, the
reinforcement learning agent must, essentially, explore each
branch of the trajectory tree, which will increase training
time. This is acceptable as Quixote is meant to be run as
an offline process and should only need to be run once per
environment.

5 Case Study
To show the effectiveness of the Quixote system, we have
chosen to perform a case study in a modified gridworld called
Pharmacy World. In this case study, we explore how effective
Quixote is when all events in the trajectory tree correspond to
agent actions and states.

5.1 Pharmacy World Domain
The Pharmacy World domain is a modified gridworld that
is based on the innocuous activity of going to the pharmacy
to purchase drugs and returning home with them. Pharmacy
World contains five different locations each positioned some-
where in the gridworld: a house, a bank, a doctor’s office,
a clinic, and a pharmacy. Each of these locations, except for
the house, contains items that can be used to enable or disable
certain actions. The bank contains money that can be used to
purchase either weak or strong drugs from the Pharmacy. The
doctor’s office and the clinic both contain prescriptions that
can be used with the money to purchase strong drugs.

The actions that the agent can take in Pharmacy World in-
clude simple movement actions, such as moving and enter-
ing/leaving a building, and actions that are used to retrieve
objects. This is a stochastic environment because one partic-
ular action (Get Examined) fails 25% of the time. Generally,
items can be acquired either by stealing them or by first in-
teracting with people at various locations (such as the Bank
Teller at the bank). The goal in Pharmacy World is to return
to the house with either the strong or the weak drugs, with the
strong drugs being preferred.

5.2 Simulation Study
The first study done in Pharmacy world was to determine if
the optimal policy learned by Quixote exists within the space



of acceptable behaviors defined by the cleaned corpus of sto-
ries. We will discuss this study and its results below.

Determining Rewards
In order to assign rewards in Pharmacy World, we first must
have a cleaned corpus of stories defining acceptable behav-
iors. For this case study we chose to manually author this
set of stories. We do this because the story cleaning process
process has been explored in great detail [7] and empirically
evaluated. Manually authoring these stories gives us an effi-
cient means to control the evaluation of the novel parts of our
system. In total, we manually authored 213 stories that can
be used to generate a trajectory tree containing 827 nodes.

Once the trajectory tree has been created, we manually map
the plot events in the tree onto actions/states that exist inside
Pharmacy World. Each node in the trajectory tree directly
corresponds to an action available in Pharmacy World, ex-
cept for the act of receiving or not receiving a prescription.
This node actually represents whether the Get Examined ac-
tion fails or succeeds, so that is where rewards are assigned.

In these experiments, we used the base reward value 10 ev-
ery time the agent moved to a new event in the trajectory tree.
This, in practice, produced acceptable policies for Pharmacy
World, but is likely domain specific. We leave the problem
of automatically determining this value to future work. The
base reward value was then further weighted by event impor-
tance as discussed earlier. For each other possible state, we
assigned a reward value of −1.0.

Training
We used Q-learning in conjunction with ε-greedy exploration
for training. For this study we define ε to be 0.8 and then
slowly decay it over 200, 000 learning episodes. In prac-
tice, this was a sufficient number of episodes for Q-learning
to converge. In addition, we use parameters γ = 1.0 and
α = 0.5. To evaluate the learned behavior, we examined the
policy that the agent learned in order to verify that it existed
within the space of accepted stories defined by the corpus of
stories.

Results
After training for 200, 000 episodes, we examined the policy
that the agent learned. Since there is a source of stochasticity
in Pharmacy World, this resulted in 3 possible classes of tra-
jectories through the environment depending on the outcome
of the Get Examined action.

The first case that the agent could encounter is the one
in which the Get Examined action succeeds on the first at-
tempt. In this case, the agent first navigates to the clinic and
gets examined in order to receive the prescription. Then, the
agent navigates to the bank and requests and withdraws the
money. Having obtained the money and the prescription, the
agent then moves to the pharmacy, requests and purchases the
strong drugs, and finally returns home.

In the second case the first Get Examined action fails while
the second one succeeds. The agent’s policy is the same as in
the first case except that the agent goes to the doctor’s office to
get examined after retrieving the money from the bank. This
action ultimately succeeds, and then the agent navigates to
the pharmacy to purchase the strong drugs and returns home.

The final case is the one in which the agent is unable to
obtain a prescription at all due to both Get Examined actions
failing. In this case, the agent’s policy is the same as the
policy in the second case, except that the agent then chooses
to purchase the weak drugs and return home.

Each of these trajectory classes falls within the realm of
acceptable behavior as defined by the story corpus we used
to generate the reward function. Thus, by introducing this
reward function we were able to prevent the agent from ex-
hibiting abnormal, and possibly psychotic-appearing behav-
iors that may result from simpler reward functions (such as
stealing the drugs rather than purchasing them).

5.3 User Study
In order to further evaluate the effectiveness of Quixote, we
performed a user study to determine how humans perceived
the policies learned by our agent. The details of this study
and the results are discussed in this section.

Methodology
In this study humans watched replays of agents acting in a
graphical representation of Pharmacy World and then chose
which one they felt acted in a more humanlike manner.

For this study, we compared an agent trained using Quixote
against two other agents. For the remainder of this study,
we’ll refer to our agent as the Quixote agent. As a baseline,
we used an agent that was trained using Q-Learning with a
naı̈ve reward function in which the agent is only rewarded for
returning home with either of the drugs. We refer to this agent
as the baseline agent. The other agent used in the study, re-
ferred to as the human agent, was hand authored based on re-
plays of humans acting out the Pharmacy World scenario. In
order to create this agent, 3 human players unfamiliar with the
research played through the Pharmacy World scenario under
three different conditions, each meant to account for a possi-
ble outcome of the Get Examined action. Each author played
through these conditions in a randomized order. We took the
behavior exhibited by a majority of the authors and used that
to create the human agent used in the study. Both Q-Learning
agents (the Quixote agent and baseline agent) were trained
over 200, 000 learning episodes using ε-greedy exploration
with the parameters γ = 1.0 and α = 0.5.

In the study, participants are semi-randomly shown pairs of
replays selected from the three agents tested acting under one
of the following conditions: no Get Examined actions fail, the
first Get Examined action fails, or all Get Examined actions
fail. Since we are interested in how the Quixote agent com-
pares to the other agents, participants are always presented
with replays of the Quixote agent when making a compar-
ison. The other agent compared against was randomly se-
lected from among the baseline agent and the human agent.
The pairs of agents are presented to the user in a random or-
der. After viewing both replays, users are asked to select if
either the first replay is more humanlike than the second, the
second replay is more humanlike than the first, or if they are
both equally humanlike. This process repeats for each of the
remaining conditions meaning that each user views two re-
plays for each of the three possible conditions. These condi-
tions are also presented to users in a randomized order.



Table 1: Number of responses for each condition. C1, 2, and
3 correspond to the cases where all Get Examined actions
succeed, the first Get Examined action fails, and both Get
Examined actions fail respectively.

C1 C2 C3
Quixote vs Human 33 25 33
Quixote vs Baseline 32 42 34

Table 2: Comparison of the Quixote agent and the baseline
agent. This shows the number of participants that selected
each option for which agent was more humanlike.

Quixote Baseline Both
Condition 1 23 2 7
Condition 2 28 10 4
Condition 3 23 8 3

Our hypothesis in this study is that the Quixote agent will
exhibit more humanlike behavior than the baseline agent and
comparable behavior to the human agent. We place more em-
phasis on outperforming the baseline agent, however, as this
tells us that our technique is offering some amount of im-
provement over a naı̈ve baseline.

Data Collection
Users took part in this study online over the course of sev-
eral weeks. In total, 83 users participated in the study pro-
ducing 199 evaluations. This means that, on average, each
user completed 2.4 evaluations. The number of evaluations
for each condition of the study are summarized in Table 1.
We attribute the imbalance in condition 2 to the variance that
occurs from showing users random replays.

Results and Discussion
A summary of responses is shown in Tables 2 and 3. To an-
alyze the data collected, we performed a chi-square test be-
tween each condition with a null hypothesis of a uniform dis-
tribution across preferences. Comparing the Quixote agent
and the baseline agent, results show that the resulting distri-
bution of participant responses was significantly (p < 0.05)
skewed towards the Quixote agent. This means that partic-
ipants felt that the Quixote agent exhibited more humanlike
behavior than the baseline. This confirms part of our hypothe-
sis in that agents produced by Quixote are differentiable from
agents that learn behavior based on a naı̈ve reward function.

When comparing the Quixote agent and the human agent,
we find that the distribution of participant responses is signif-
icantly (p < 0.05) skewed towards the human agent except
in the first condition where the distribution is significantly

Table 3: Comparison of the Quixote agent and the human
agent. This shows the number of participants that selected
each option for which agent was more humanlike.

Quixote Human Both
Condition 1 3 9 21
Condition 2 3 13 9
Condition 3 8 20 5

(p < 0.05) towards both agents being equally humanlike. To
better understand this result, we must examine the behaviors
exhibited by each of these agents under each condition. Un-
der the first condition, both agents act identically,which ex-
plains why these agents appear equally humanlike. In the
second condition and third condition, the human agent tries
to get the prescription first. When this action fails, the human
makes further attempts to get a prescription before moving
on to other tasks. Contrast this with the Quixote agent which
first tries to get the prescription at the clinic (which fails), then
withdraws the money from the bank, and then tries to get the
prescription at the doctor’s office.

The main difference between these two agents is that the
human agent exhibits the idea of conceptual locality, or
thought flow [12]. The human agent does not interleave gen-
eral tasks such as getting the prescription, opting instead to
fully complete a task before moving on. The Quixote agent,
however, is willing to interleave tasks if it would be more
efficient. We hypothesize that it is more humanlike to not
interleave tasks in Pharmacy World. Using this finding, it
is possible to further improve upon Quixote by incorporat-
ing domain-independent heuristics such as conceptual local-
ity. This we leave for future work.

6 Event Correspondence
In this section, we explore how Quixote will perform in the
more realistic situation in which natural language process-
ing techniques are used to determine correspondence between
story events and agent actions. We will examine the follow-
ing cases: (a) the case where events in the trajectory tree do
not exist in the agent’s environment/actionset and (b) the case
where events in the trajectory tree map onto several different
actions in the agent’s actionset.

6.1 Missing Information
In this section, we examine the performance of our technique
in the case where some of the events that occur in the trajec-
tory tree do not map onto actions that the agent can perform
and, thus, must be removed from the trajectory tree.

Methodology
Since the story corpus is generated by authors with no prior
knowledge of the environment that the agent will exist in, it
is to be expected that there will not always be a perfect corre-
spondence between story events and the actions an agent can
take. This could also be caused by a poor natural language
system missing possible matches. In order to simulate the
case where the author cannot map an event onto any action,
we randomly remove nodes from the trajectory tree used in
Section 5.2 and then use this modified trajectory tree to gen-
erate a reward function.

For this evaluation, we choose to examine the cases where
single events could not be mapped to any action and, thus,
are removed from the trajectory tree. Due to the size and sim-
plicity of Pharmacy World, we believe that examining these
cases will be sufficient to get a preliminary understanding of
how our technique will perform in this environment with in-
complete mappings. Simulations were run with the same pa-
rameters as previous experiments.



Each policy is then evaluated based on whether or not it
falls within the space of acceptable behavior outlined by the
trajectory tree. The more policies that fall in this space, the
more robust Quixote is to missing information.

Results and Discussion
In the case where single nodes were removed from the tra-
jectory tree, every policy was deemed acceptable except for
those learned when Withdraw Money, Buy Strong Drugs, or
Buy Weak Drugs were removed from the tree. In these cases,
removing the node in question resulted in a policy in which
the agent resorted to stealing.

The reason that this behavior occurred is because an alter-
native existed for each of these actions. In Pharmacy World,
the agent can either purchase these items (which involves first
requesting the item) or steal them (which requires no prereq-
uisite actions). If each step receives a negative reward, then a
reinforcement learning agent will prefer to steal even though
it is typically considered socially unacceptable. To prevent
this, the author must assign rewards such that the negative re-
ward received for performing an extra action is offset by the
reward gained by purchasing an item.

This gives insight into one case in which missing infor-
mation causes Quixote to fail: if there are multiple ways to
complete a task and one is rewarded while the others are not,
removing that reward will result in the agent reverting back
to completing tasks as fast as possible. As such, it is impor-
tant that these types of events be mapped correctly onto agent
actions.

6.2 Ambiguous Events
In this section, we examine the performance of Quixote in
cases where ambiguity in the natural language correspon-
dence between events and actions leads to an event corre-
sponding to several possible actions. For example, the story
event of Go To Bank could correspond to both the action Go
inside Bank and to the action Go outside Bank in the agent’s
action space. These types of ambiguities can arise when one
uses natural language processing techniques to automatically
map story events onto agent actions.

Methodology
In order to simulate the semantic ambiguities that might occur
due to an imperfect correspondence between plot events and
the actions available to an agent, we create a probabilistic
mapping of story events to agent actions. In order to make
this mapping, the agent’s actions must have natural language
labels. For this study we manually authored a set of action
labels that accurately described what the action did.

Each of the words in a story event or agent action label is
converted to a vector using word2vec [11] and then averaged.
Events are then matched to actions based on cosine similarity
of their respective vectors. While more advanced techniques
exist, this method allows us to examine how Quixote per-
forms in the face of poor mappings. For these experiments,
we use a threshold value to determine whether a match has
occurred or not. It is possible that a plot event can map to
multiple different actions in the agent environment. For the
purposes of these tests, we try different threshold values when
accepting or rejecting matches.

Simulations are done using Q-Learning to train a reinforce-
ment learning using the parameters used in previous simula-
tion experiments. Each policy generated by a simulation run
is then evaluated based on whether or not it falls within the
space of acceptable behavior outlined by the trajectory tree.

Results and Discussion
Quixote remained mostly robust in the face of multiple
matches. Dissecting the types of matches that were created
helped us derive an intuition of why certain mappings led to
unacceptable behavior while others did not.

Some events were mapped to actions that were not avail-
able at the same time. In these experiments, plot event Go
To Pharmacy mapped to the actions Go Inside Pharmacy and
Go Outside Pharmacy. Since these actions are not executable
at the same time, this had no effect on the policy learned.

Even in the case where mapped actions are executable, we
still found that acceptable behavior is produced if all mapped
actions are socially acceptable. Since any of the actions is so-
cially acceptable, the policy generated is acceptable as well.

However, when any of the executable actions is socially
unacceptable, the reward function starts to have a greater im-
pact on the acceptability of the generated policy. For these
experiments, the plot event Buy Strong Drugs was mapped to
both the actions of Purchase strong drugs and Pick Up strong
drugs, which without the prerequisite action of requestion is
essentially stealing. In Pharmacy World, purchasing items re-
quires more steps than simply picking up an item. We found
that unless the reward provided to Quixote for the Purchase
strong drugs action was high enough to offset the cost of the
extra step for the correct behavior (by weighting the reward
based on the confidence of the match, for example), the agent
learned to forego the purchase and steal.

This leads us to conclude, as with incomplete mappings,
that mappings onto actions with socially unacceptable alter-
natives require that reward function parameters be precisely
tuned to bias Quixote towards the socially correct actions.

7 Conclusions
In this work we introduce Quixote, a system for training be-
lievable agents based on stories. Our system works by using
exemplar stories to define a space of acceptable behavior and
then using this space to derive reward functions that encour-
age the agent to exhibit behaviors that fall within it. We have
shown that under ideal conditions, Quixote is able to produce
behaviors that fall within this space, although some difference
with human behavior can occur. We have also explored how
robust Quixote is to incorrect or incomplete knowledge that
can result from poor mappings from the natural language con-
tained in the story corpus onto the agent’s action space. Using
this technique, we allow humans to more naturally communi-
cate with interactive machine learning algorithms which will,
ideally, make it easier for non-programmers to use these al-
gorithms.

References
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via

inverse reinforcement learning. In Proceedings of the



twenty-first international conference on Machine learn-
ing, page 1. ACM, 2004.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Brown-
ing. A survey of robot learning from demonstra-
tion. Robotics and autonomous systems, 57(5):469–483,
2009.

[3] D. H. Grollman and A. Billard. Donut as i do: Learning
from failed demonstrations. In Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference on,
pages 3804–3809. IEEE, 2011.

[4] B. Harrison and M. O. Riedl. Towards learning from
stories: An approach to interactive machine learning.
In Proceedings of the Workshop on Symbiotic Cognitive
Systems, 2016.

[5] K. Judah, S. Roy, A. Fern, and T. G. Dietterich. Rein-
forcement learning via practice and critique advice. In
AAAI, 2010.

[6] W. B. Knox and P. Stone. Interactively shaping agents
via human reinforcement: The tamer framework. In
Proceedings of the fifth international conference on
Knowledge capture, pages 9–16. ACM, 2009.

[7] B. Li, S. Lee-Urban, G. Johnston, and M. Riedl. Story
generation with crowdsourced plot graphs. In AAAI,
2013.

[8] C. Lignos, V. Raman, C. Finucane, M. Marcus, and
H. Kress-Gazit. Provably correct reactive control from
natural language. Autonomous Robots, 38(1):89–105,
2015.

[9] R. Loftin, J. MacGlashan, B. Peng, M. E. Taylor, M. L.
Littman, J. Huang, and D. L. Roberts. A strategy-aware
technique for learning behaviors from discrete human
feedback. In Proc. of AAAI, 2014.

[10] J. MacGlashan, M. Babes-Vroman, M. desJardins,
M. Littman, S. Muresan, S. Squire, S. Tellex, D. Aru-
mugam, and L. Yang. Grounding english commands to
reward functions. In Proceedings of Robotics: Science
and Systems, Rome, Italy, July 2015.

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Effi-
cient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013.

[12] M. J. Nelson and M. Mateas. Search-based drama man-
agement in the interactive fiction anchorhead. In AIIDE,
pages 99–104, 2005.

[13] A. Y. Ng and S. Russell. Algorithms for inverse rein-
forcement learning. In in Proc. 17th International Conf.
on Machine Learning, 2000.

[14] D. Ramachandran and E. Amir. Bayesian inverse rein-
forcement learning. In Proceedings of the 20th interna-
tional joint conference on Artifical intelligence, pages
2586–2591. Morgan Kaufmann Publishers Inc., 2007.

[15] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge, 1998.

[16] C. J. Watkins and P. Dayan. Q-learning. Machine learn-
ing, 8(3-4):279–292, 1992.

[17] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey.
Maximum entropy inverse reinforcement learning. In
Proceedings of the 23rd national conference on Arti-
ficial intelligence-Volume 3, pages 1433–1438. AAAI
Press, 2008.


