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Abstract. Robot task execution when situated in real-world environ-
ments is fragile. As such, robot architectures must rely on robust error
recovery, adding non-trivial complexity to highly-complex robot systems.
To handle this complexity in development, we introduce Recovery-Driven
Development (RDD), an iterative task scripting process that facilitates
rapid task and recovery development by leveraging hierarchical specifica-
tion, separation of nominal task and recovery development, and situated
testing. We validate our approach with our challenge-winning mobile
manipulator software architecture developed using RDD for the FetchIt!
Challenge at the IEEE 2019 International Conference on Robotics and
Automation. We attribute the success of our system to the level of ro-
bustness achieved using RDD, and conclude with lessons learned for de-
veloping such systems.

Keywords: failure recovery, robot architectures, mobile manipulation,
design and prototyping

1 Introduction
Robot execution is fragile and often overfits to the development test bed [2, 9].
As such, robust robot architectures must rely on recovery behaviors in order to
maintain autonomy when assumptions are violated [20]. Recovery during robot
tasks is non-trivial, however, as resetting to a known state can be difficult [16] and
knowing where to resume execution can be context dependent [5]. In addition,
unforeseen faults create ambiguity in recovery strategies.

In this work, we address the development of robust recovery for recipe-based
tasks—a class of robot tasks that dictate a pre-specified sequence of steps to
accomplish a goal. Such tasks include common mobile manipulation tasks in
unstructured environments, such as kit packing, machine assembly, table setting,
or food preparation. Even for seemingly straightforward recipe-based tasks, the
many interactions with the environment, and between robot components, lead
to faults that are difficult to identify a priori [11], often resulting in systems
that are inflexible or not robust to failures.
? Indicates equal contribution
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State machines [5], hybrid automata [10], and planning approaches [3] are
common methods of sequencing robot execution that can be made robust to fail-
ures. However, robustness is often achieved at the cost of a complexity explosion
in the task sequence specification or a loss of interpretability of the task recipe.
Crucially, the increased complexity and the lack of interpretability negatively
impact the iterative development of the main task and recovery processes, both
of which are necessary in the face of potentially innumerable failure conditions.

We therefore propose Recovery-Driven Development (RDD), a development
process for recipe-based tasks couched in agile methodology. The key tenet of
RDD is the separation of nominal task specification from recovery behavior defi-
nition. Another guiding principle of RDD is the support of hierarchical task spec-
ification, which both allows for re-use in the task recipe and provides higher-level
context to recovery behavior selection. As such, the RDD methodology enables
system developers to easily explore aspects of a robot’s system design, such as
those identified by Eppner et al. [10]—assumptions, generality, modularity, etc.

We define RDD as a 2-pronged iterative approach to developing robust task
execution, in which designers can move back and forth between both prongs
without risk of one phase interfering with the other:

1. Specification (Section 4.1): scripting a hierarchical task sequence incre-
mentally from a task recipe, using strong assumptions

2. Refinement (Section 4.2): developing recovery behaviors by executing a
situated task, noting a fault, specifying new recoveries, and repeating

The result is a development methodology that supports rapid task and recovery
prototyping, without a noticeable loss in the robot’s robustness when deployed.

In this work, we present our task execution and monitoring system as an
example framework designed to enable RDD for recipe-based robot tasks1. We
validate both the task system and the RDD workflow with our team’s winning
approach to the FetchIt! Challenge at the IEEE 2019 International Conference
on Robotics and Automation (ICRA), in which our success was achieved mainly
due to the robustness afforded to our system from the RDD methodology. Ad-
ditionally, we provide details and open-source code for our complete system
developed for the FetchIt! Challenge as a concrete example of a complex mobile
manipulation system developed using RDD. We conclude with a discussion of
lessons learned for the fast and robust development of recipe-based robot tasks.

2 Related Work

Designing a robot’s software is often application-dependent, requiring tradeoffs
between multiple approaches [14]. In this section we enumerate common design
choices that emerge across applications for robot architectures, situate our task
execution framework within the design practices, and motivate the development
of our approach.

Robot architectures are generally three-tiered with the following levels [14]:

1 https://github.com/GT-RAIL/derail-fetchit-public/tree/master/task execution
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– A behavioral level for highly reactive and highly situated robot execution.
Modules at this level, sometimes termed skills, have a tight perception-action
loop and are the focus of much research.

– An executive level that bridges low-level tasks (skills) and high-level tasks
(goals). The executive is responsible for sequencing skills, monitoring execu-
tion, and handling exceptions.

– A planning level responsible for tasking the executive level with goals to
achieve based on future objectives, robot constraints, environmental situa-
tions, etc.

Our primary contribution is in enabling the executive level to support an RDD
workflow, and as such the remainder of this section examines executive level
design and recovery. We discuss a behavioral implementation of mobile manipu-
lation in Section 3 to provide context for our executive implementation. We also
note that planning-level requirements are minimal for autonomous recipe-based
tasks, although we return to this assumption at the end of Section 6.

2.1 Executive Level Design

The most informative consideration in executive level design is how dynamic
or static the task should be. A task can be dynamic due to environments with
uncontrolled agents such as humans [4] or competing objectives [21]. There are
four paradigms to behavior sequencing at the executive level, with differing levels
of support for dynamic tasks:

– Agent-based control partitions control into separate, synchronized agents
that maintain consistency with the global robot objective. This works well
for dynamic environments, and was implemented through behavior trees in
Playful [4] and resource agents in ROAR [8]. However, debugging and rea-
soning about the interactions between agents can be difficult.

– Planning is a principled manner of sequencing skills in dynamic environ-
ments, and was implemented by CRAM [3]. However, when designers know
the exact sequence of skills they want, as in recipe-based tasks, the design
process for planning can be non-intuitive or even counter-productive [5].

– Finite State Machines retain some of the autonomy in sequence specification
provided by planning, and also allow system designers to explicitly specify
state transitions a priori based on expected sub-task outcomes. Additionally,
state machines support model verification and composition for incremental
construction of complex behaviors [13, 5]. However, state machines, and the
related method of hybrid automata [10], suffer from an explosion of transi-
tions as the number of skills or the task complexity grows.

– Scripting allows for the compositionality of state machines with the simple
declaration, rather than programming, of robot behavior [20]. Additionally,
scripting provides easier error recovery to handle exceptions at the executive
level than state machines. However, scripting puts the burden of sequence
specification on the designer, raising scalability issues, especially for multi-
objective tasks [5].
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In this work, we focus on relatively static environments and recipe-based
tasks that can be decomposed into subtasks. In order to facilitate the rapid
prototyping and incremental inclusion of error recoveries inherent to RDD, we
sequence behaviors through hierarchical scripting. We address scripting’s scala-
bility issues by separating task specification and recovery.

2.2 Reactivity and Recovery

A robust robot executive level must include failover mechanisms that maintain
autonomy when behavior design assumptions are not satisfied [20]. Therefore,
recovery systems must address many challenges, including determining how to
reset to a known state [16], handling context dependent execution resumption [5],
and deciding on recovery strategies for unforeseen faults. A common recovery
strategy for resetting to a known state is to re-attempt the entire task, as in
[10], although such approaches are less reactive to failures.

Planning approaches maintain reactivity by recovering from seen and un-
foreseen failures by replanning [3]. Further, plans provide theoretical guarantees
on robustness to unforeseen execution failures [15, 10]. Prior works have treated
recovery as a planning problem with the goal of reaching any state where a di-
agnosed fault does not exist [24]. However, as noted earlier, planning approaches
can be difficult to iteratively develop, or can result in not-easily interpretable
task specifications. Our approach avoids planning at the executive layer in favor
of scripting, to facilitate rapid and highly-interpretable behavior development.

In the absence of planning, reactively resetting to a good known state can be
accomplished through fault forecasting, such as FMECA, which reasons about
expected faults and the explicit recovery steps to address them [7]. However,
such approaches are time consuming and not guaranteed to find all faults [11].
We instead take an empirical approach to fault discovery through situated task
execution, exploiting the inherent structure of recipe-based tasks, allowing for
pre-scripted recovery to intermediate task steps.

3 System Overview

Before presenting our task execution and recovery system, we first describe the
behavioral level of our general mobile manipulation architecture, to serve two
purposes: (1) to share our open-source challenge-winning mobile manipulation
system developed to support RDD, and (2) to establish a task context and a
set of robot capabilities that we will refer to throughout the paper, grounding
our discussion of RDD’s benefits and drawbacks in a fully-realized robot system.
The architecture consists of a set of independent mobile manipulation modules,
implemented using the Robot Operating System (ROS) [18], shown in Figure 1.
Object perception modules are implemented as ROS service servers, and ob-
ject manipulation and base navigation modules are implemented as actionlib2

servers. Each independent module can be called by the task executor, and pro-

2
http://wiki.ros.org/actionlib



Taking Recoveries to Task 5

Fig. 1: Mobile manipulation system overview. Arrows denote ROS information
flow, through publishers, subscribers, services, and actionlib.

vides feedback to the task executor and task monitor3. The modules consist of
the following capabilities:

Object Perception. Our perception modules implement a perception pipeline
for RGBD sensor data, using the Point Cloud Library (PCL) [19]. The object
segmentation module uses the rail segmentation4 package to identify point
cloud clusters-of-interest through table surface detection and Euclidean distance
clustering. We divide our object recognition approaches between large and small
objects. For large objects, we perform model matching using the rail mesh icp5

package that uses an Iterative Closest Point (ICP) PCL pipeline, which also
provides object pose detection. For small object recognition, we train an SVM
classifier over Ensemble of Shape Functions (ESF) descriptors [23]. We do not
need to perform pose estimation for small objects due to our object grasping
approach, described below.

Object Manipulation. Most of our manipulation modules make use of MoveIt!
to perform arm planning to either joint goals or end-effector pose goals using
OMPL’s RRTConnect motion planner [6]. This includes both general arm repo-
sitioning actions, which the task executor can call directly (e.g. to move the arm
out of the way of the camera), and execution actions, called by other object ma-
nipulation modules. Object grasping calculates antipodal grasps over an object
point cloud using the agile grasp package [17], which are then ordered and
executed using pairwise ranking through fetch grasp suggestion [12]. As ob-
jects can shift during the grasping process, we perform post-grasp pose detection
using the in-hand localization module, which identifies the object point cloud by
performing background subtraction on the robot’s gripper, and calculates the

3 Each module must necessarily provide feedback on its own faults so that the executive
level can make relevant recovery decisions.

4
http://wiki.ros.org/rail segmentation

5
http://wiki.ros.org/rail mesh icp
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Fig. 2: Overview of the two packages in our the executive level. Arrows denote
ROS information flow, through publishers, subscribers, services, and actionlib.

object’s pose based on its principal axes determined by Principal Component
Analysis (PCA). Given a known object pose and a desired place location, object
placing calculates and executes a pose goal for placing an object that ensures
the gripper fingers and palm are out of the way of the object’s fall trajectory.

We also include some manipulation modules that do not use MoveIt!, due to
the limitations of sampling-based motion planning. For large object manipula-
tion, such as lifting and placing kits of objects, we include a kinesthetic teaching
module [1]. This allows system designers to record and play back arm trajecto-
ries, either in full or as a set of waypoints. Additionally, we include task-specific
manipulation actions to implement specific manipulation skills such as raising
and lowering objects, using a Cartesian end-effector controller6, and peg-in-hole
insertion, using a controller with end-effector pose and joint effort as feedback.

Base Navigation. LIDAR-based localization uses AMCL provided by ROS’s
nav stack7 to localize the base with respect to a pre-collected 2D occupancy grid
of the environment. Navigation is primarily done using point-to-point navigation
between waypoints on the map, executed using a PID controller8. We also include
local repositioning actions, which implement short movement primitives such as
backing up from a table. The repositioning actions are implemented using a PID
controller with gains tuned for shorter, more precise base goals.

With each module implemented, the navigation, perception, and manipula-
tion actions can be sequenced in a robust manner to complete mobile manipu-
lation tasks by the task execution system described in the next section.

4 Task Execution and Recovery

In this section, we describe our executive level, which consists of two packages
seen in Figure 2: the task executor and the task monitor9. The task executor
(Section 4.1) contains scaffolding to specify and incrementally develop a main

6
Available at https://github.com/GT-RAIL/fetch simple linear controller

7
http://wiki.ros.org/navigation

8 In complex environments, nav stack’s global and local planners can be used instead.
9

Stand-alone packages under development at https://github.com/GT-RAIL/assistance arbitration
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task recipe. The task monitor (Section 4.2) contains the utilities necessary re-
cover from general failures during task execution.

4.1 RDD Specification: The Task Executor
During the Specification phase of RDD, developers translate the nominal be-
haviour of the robot executing a task recipe into a script. Crucially, developers
should fulfill two objectives in this phase: (1) declare robot behavior under the
strong assumption of perfect robustness in execution, and (2) provide structure
to the specified script so that in the event of an error, it is easy to garner error
context as well as resume execution once the error is resolved. The task executor
package facillitates meeting such objectives.

Specifically, the task executor provides the following utilities to aid in rapid
task prototyping and testing:

– A Python-based abstraction for specifying semantically meaningful inter-
faces to the robot’s behavior layer, to form sequenceable primitive actions.

– A custom domain-specific language using YAML syntax for scripting recipe-
based tasks, with a view towards facilitating hierarchical task declaration for
code modularity and reuse.

– A consistent API to tasks and actions to facilitate testing in isolation and
to enable easy invocation from other system components.

– A database to provide a common knowledge-base of task relevant information
to all tasks and primitive behaviors.

– An automatically populated belief system encapsulating pertinent robot,
environment, and task states, to provide additional context during recovery.

The following sections provide additional details on the above utilities.

Actions Primitive actions are specified as Python objects derived from a com-
mon abstract class. They are implemented either as a client to individual robot
components, such as to point-to-point navigation, or as a client to semantic
groupings of robot components, such as to the grasp calculation packages.

Tasks Tasks manifest as a Python class derived from the same abstract class
as actions, but whose execution is specified using a custom domain-specific lan-
guage, which uses YAML syntax, to allow loading and reloading of tasks from
the ROS parameter server. The language allows tasks to:

– reuse other tasks for the creation of complex task hierarchies
– accept parameters for adaptation and compositionality in task specification
– create, maintain, and manipulate local variables for data transfer between

actions and for adaptation to environmental or execution conditions
– utilize rudimentary control flow through conditional statements and loops,

aiding in concise task specification

We present the formal task syntax in Listing 1, with example tasks used for
large object pose estimation and for object picking at the FetchIt! Challenge
(Section 5.1) shown in Listing 2. A task is defined as a dictionary entry with
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(task name):

[params: [...]]

[var: [...]]

steps:

- (action | task | op | choice | loop) : (name)

[params: {...}]

[var: [...]]

[...]

Listing 1: Task Syntax

detect_schunk_pose_task:

params:

- look_location

var:

- chuck_approach_pose

steps:

- action: look

params:

pose: params.look_location

- action: detect_schunk

var:

- chuck_approach_pose

pick_task:

params: [object_idx, grasps, object_key]

var: [grasped]

steps:

- action: pick

params:

object_idx: params.object_idx

grasps: params.grasps

object_key: params.object_key

- action: verify_grasp

params:

abort_on_false: false

var:

- grasped

Listing 2: Example Tasks

the required key of steps, which defines a list of the steps in the task, and the
optional keys of params and var, which define the task inputs and outputs. Each
step in the task is named and can be one of five types: (1) action, invoking
a primitive action, (2) task, invoking another task, (3) op, invoking a simple
Python function for rudimentary data manipulation, (4) choice, to evaluate
a boolean expression for control flow, and (5) loop, to loop while a boolean
expression is true. All steps accept a dictionary setting values for their params,
and return a list of var values that become local variables in the parent task10.

Consistent API Tasks and actions have a consistent API, which mimics that
of ROS’s actionlib interface. This consistent API enables (1) the use of JSON
to specify inputs and outputs to tasks and actions easily in order to test them
in isolation, and (2) the invocation of individual tasks from other ROS nodes,
such as the recovery system, through the actionlib interface when required.

Database Recipe-based tasks can be parameterized by semantically meaningful
task variables which are then grounded to different values for particular envi-
ronments or tasks. Example task variables are locations, robot poses, objects,
or other real-world entities. The database is a YAML dictionary loaded into the
ROS parameter server that provides a single source of truth for grounding all
relevant task variables. Rapid environment adaptation is readily facilitated by
modifying the values associated with known keys in the database definition.

Beliefs Beliefs are included in the task executive layer for two reasons: (1) to
provide context to recovery mechanisms in the event of a failure, and (2) to pro-
vide updates to a higher level planner, should one exist, about relevant states of
the task, the robot, or the environment. For instance, the expected and actual
state may become mismatched: transient localization and navigation errors dur-
ing point-to-point navigation might compound to leave the robot at a location
outside an expected tolerance for manipulation actions. Background monitors on
the robot’s location can indicate a mismatch, and in turn the recovery system
can use this information to reposition the robot.
10 For more details, see the README in our Github repository.
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Discussion The task executor package is optimized to facilitate rapid specifica-
tion and testing of recipe-based tasks: developed task scripts are deterministic,
easy to specify, interpretable, and readily allow the testing of components in
isolation. Additionally, the scripting approach to task specification provides the
implicit benefits of straightforward state tracking and an efficiency in task execu-
tion borne from overestimating the robustness of the robot’s behaviors. Indeed,
we do not check for most violations to the operating conditions of our primitive
behaviors until they report a failure.

We note that the determinism of our scripting approach and overestimation of
the robustness of our behaviors leaves us susceptible to violations in assumptions
of the environmental state (a susceptibility that reactive sequencing approaches
do not share). However, instead of complicating the task scripts and in turn
slowing down task specification, our RDD methodology relies on the incremental
recovery development to achieve robustness and reactivity.

4.2 RDD Refinement: The Task Monitor

The primary objective of system development during the Refinement phase of
RDD is to rapidly incorporate diverse recovery strategies for a specified task
recipe in order to incrementally improve its robustness. As such, it involves
addressing four challenges (mentioned in Section 2):

1. resolving ambiguity in the recovery policy for unforeseen faults
2. taking actions to reset to a known state in the event of a fault
3. deciding how to resume execution once a fault is addressed
4. trying diverse strategies when recovering from a repeated fault

The task monitor package, which provides execution monitoring and error re-
covery to the task executor, is designed to address each of the above challenges.

Handling Unseen Errors In the event of an unseen error during develop-
ment11, the monitor immediately exits from the task, displaying the entire con-
text of the error in a consistent manner and logging all possible causes. Develop-
ers can then inspect the logs to create a tailored (set of) recovery mechanism(s)
for such errors, thereby making them “known” errors during future failures.
In practice, we quickly accumulate a list of errors that our developed recovery
strategies know to address.

During deployment, unseen errors can be dealt with under a domain-dependent
context-relevant policy of always exit, always retry, or some combination thereof.

Taking Actions Rapidly developing and testing actions to take in the event
of a particular failure requires the presence of (1) a means of determining the
diagnosis of an error, and (2) an easy mechanism to invoke actions or subsets of
actions. The monitor and task executor are designed to facilitate both.

11 The system can detect unseen errors in three ways: (1) the behavior level can prop-
agate reported faults (i.e. action servers aborting, nodes crashing, etc.), (2) recipe
steps can explicitly check for expected errors, or, in the case of unexpected errors,
(3) the developer can stop system execution and write a new error detection module.
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Fig. 3: Metadata passed between the task executor and the task monitor, used
to facilitate error diagnosis and task resumption after fault resolution.

The structure and compositional design of our main task recipe aids in fault
diagnosis, given the current task state. Specifically, in the event of an error, tasks
in the task executor provide a consistent context of their state in a recursive dic-
tionary containing all tasks in a task hierarchy until the primitive action, and
primitive actions can also provide error context through custom data fields, as
shown in Figure 3. Further, the task executor’s beliefs (Section 4.1) can addi-
tionally inform error recovery.

When an error is diagnosed, the consistent API for invoking tasks and actions
facilitates the monitor in resolving the problem. The monitor uses a redundant
instance of the task executor, called the recovery executor (seen in Figure 2), to
execute simple task recipes for recovery.

Resuming We have identified five strategies for resuming task execution that
have applied to the errors we have encountered:

1. RESUME NONE: stop executing the task.
2. RESUME CONTINUE: resume task execution from the failed step.
3. RESUME RETRY: restart a subtask, or the whole task; useful if, for example, the

environment changed during recovery and thus perception must be rerun.
4. RESUME NEXT: resume execution at the next step; useful if the recovery pro-

cess accomplishes the failed step.
5. RESUME PREVIOUS: resume execution at the previous step; useful if failure

assumptions change, but the entire subtask does not need to be restarted.

To enable full flexibility in the recovery mechanism on how tasks12 are resumed,
any of the tasks in a hierarchy can be resumed using any of the above five
strategies. An example of the context for task resumption is shown in Figure 3.

Recovery Diversity Due to the larger context of some errors, the same recov-
ery actions taken during the same fault diagnosis can fail: for example, recalcu-
lating grasps on a small object when sampling-based arm motion planning fails
to pick it up may be insufficient due to an arm workspace limitation, and instead
the error should be resolved by repositioning the robot base or by moving the
arm to a different start configuration. As such, the context dictionaries included
for diagnosis and resumption support development of diverse recovery strategies

12 Resuming execution from arbitrary stopping points in primitive actions is hard [16],
but depending on the implementation of the robot system, might be unnecessary.
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(a) Fetch Robot (b) Challenge Arena (c) Assembled Kit (d) Schunk Machine

Fig. 4: FetchIt! challenge hardware and specifications.

for the same faults, based on factors such as task hierarchy location, primitive
action failure count, or hierarchical task failure counts.

Discussion The philosophy behind RDD’s Refinement phase, i.e. incremental
and independent recovery development, necessitated a recovery system that is
deterministic, easy to specify, interpretable, and readily allows testing of indi-
vidual recoveries in isolation. Although the current version of our implemented
recovery system is not robust to failures during the recovery process, such ro-
bustness can either be added in a future iteration of our system, or can be left
to the purview of a higher-level planner in the robot system. Finally, we note
that our current rule-based system of recoveries does not easily lend itself to
analysis or verification, but such a feature can be integrated in the near future.
In the meanwhile, the easy testability of individual recoveries mitigates the lack
of verification in the system.

5 Validation

Our task execution approach formed our executive level for the FetchIt! Chal-
lenge at ICRA 2019. The challenge’s goal was to advance autonomy and robust-
ness by using a mobile manipulator to perform an industrial kit assembly task in
an unstructured environment. As such, the challenge was a good opportunity to
validate our system and development methodology in a real-world, time-sensitive
scenario. We provide a brief description of the FetchIt! Challenge, followed by
quantitative and qualitative observations of the RDD workflow and the recovery
mechanisms we developed for our competition-winning robust task executor.

As further context, and to provide a continuous example of recoveries over a
45-minute autonomous task, we provide a video of our final competition run13.

5.1 FetchIt! Challenge Overview

The FetchIt! Challenge was a mobile-manipulation challenge focused on au-
tonomously completing combined manipulation, perception, and navigation tasks
on a mobile-manipulator platform14. Specifically, the goal of the competition was
to have a Fetch mobile manipulator [22], equipped with an RGBD camera and

13 https://youtu.be/G ur71h4CNQ
14

https://opensource.fetchrobotics.com/assets/Rulebook2019.pdf
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(a) The top three levels in the hierarchical task tree. Repetitions of
pick place object in kit are omitted and denoted with an ellipsis for brevity.

(b) Full expansion of the fifth pick place object in kit task. The suffix n for each node
indicates the nth invocation of an action or task over the full task tree (n is often higher in
practice due to recovery execution). Details of place in kit task are omitted for brevity.
C denotes a choice node that denotes conditional execution, and L denotes a loop node.

Fig. 5: Hierarchical task tree for the FetchIt! challenge.

a 2D LIDAR (Figure 6a), autonomously assemble kits (Figure 6c). In order to
assemble each kit, the Fetch had to navigate a challenge arena (Figure 6b), per-
ceiving and picking the various parts from tabletops and bins. In addition to pick
and place, the Fetch had to operate machinery in the arena via physical manipu-
lation and wireless interfaces as part of the assembly process. For instance, it had
to insert the “Large Gear” in Figure 6c into a small opening shown in Figure 6d
on a simulated milling machine. Perfectly completed kits (as in Figure 6c) scored
7 points, with no points awarded for incomplete kits (i.e. any parts missing).

The robot was required to run autonomously with no intervention for an
allotted time of forty five minutes, completing as many kit assemblies as possible.
The strict scoring requiring fully assembled kits made robust task execution one
of the largest challenges of the competition.

5.2 Validation of Recovery-Driven Development

Figure 5a shows the high-level structure of the task implemented for the FetchIt!
Challenge—an easy to understand script. Figure 5b demonstrates the task com-
plexity, showing an expansion of one of the abstract tasks from Figure 5a. This
complexity is manageable thanks to hierarchy-enabled action and task reuse–
our task script reuses the look action at least 25 times and the perceive task at
least 6 times. The modular nature of the task specification simplified the design
process and allowed for independent testing of task recipes.

Further, the RDD requirement of separating specification and refinement
allowed us to safely develop new recovery behaviors in high-pressure moments
between competition runs. For instance, the simulated milling machine required
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gear insertion into a smaller hole than we had previously tested with, which
caused new faults resulting from false positives in the robot’s evaluation of the
insertion. With only 45 minutes to test between runs, we were able to quickly
update existing recovery strategies to identify insertion failure and retry the
task, without risk of disrupting the previously tested nominal task flow.

5.3 Evaluation of Task Robustness

The FetchIt! Challenge provided an opportunity to gather quantitative data
on our recovery strategies, allowing us to evaluate the error recovery utilities
provided by the task monitor (Section 4.2). We also provide a representative
example to qualitatively highlight those utilities.

Quantitative Observations We provide a breakdown of the recovery strate-
gies we implemented for the FetchIt! Challenge. In total, we implemented 18
strategies, which often included multiple sub-strategies to handle dynamic exe-
cution under differing fault conditions.

To highlight the value of easy rule specification for recoveries and the ability
to act upon a rule-based diagnosis, we define the following three situations:

1. Shared Recovery : different faults use the same rules for diagnosis and recovery

2. Immediate Action: recovery directly invokes a primitive action

3. Dynamic Recovery : in the same error diagnosis, error context determines
different parameters for recovery actions

Figure 6a shows the occurrence of these three situations in our developed recov-
eries. We most frequently use Immediate Actions, to create short and responsive
recovery actions to bring the task back to a known state. While less frequent,
Shared Recoveries aided in rapid development and Dynamic Recoveries were
crucial in creating a reactive system to deal with diverse faults.

The task executor and monitor use the following factors to determine what
recovery to perform:

1. Action/Task : the location of the error in the task hierarchy

2. Number of Aborts: how many times the error has occurred without resolution

3. Belief : a subset of the robot’s belief of the task, robot, or environment state

4. Error Signal : a specific error signal returned by a primitive action

5. Immediate Action Result : the result of actions taken for recovery execution

Figure 6b illustrates that localizing the error within the task hierarchy was es-
pecially important in determining recoveries because the task and action reuse
for different situations often required different recoveries. Overall, the use of a
diverse factors shows that robust recovery requires a wide range of context.

Finally, Figure 6c demonstrates that all resumption strategies described in
Section 4.2 were necessary for designing a robust recovery system. The diversity
in resumption strategies showcase the possibility of resuming from a task beyond
simply re-attempting it entirely, and the use of resumption strategies other than
RESUME CONTINUE show that resumption cannot always directly return to where
the error occurred.
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(a) Properties of the recovery(b) Factors used in diagnosis (c) Resumption strategies

Fig. 6: Percentage of times that recovery uses each utility of the task monitor,
for the 18 main recovery strategies designed for FetchIt! Challenge. In (c), note
that RESUME NONE is also the default strategy for unseen errors.

Representative Example We describe here recoveries for the pick action (Fig-
ure 5b) to provide concrete examples for the features mentioned above. In our
system, pick and arm can fail due to a common cause—errors in the MoveIt! Mo-
tion Planning Framework. Therefore, the default recoveries for these actions, e.g.
reinitializing a 3D obstacle map followed by a RESUME CONTINUE, are examples of
Shared Recoveries. However, depending on the context, the fault sometimes re-
quires additional recovery steps. For instance, after the third consecutive failure
of both actions in the pick task, a short upward arm move jogs the system out
of its error. When this is not enough, the cause of failures can be a limitation in
the arm’s workspace, and so the robot repositions itself based on beliefs about
the task and environment state. All faults that occur within the context of the
perceive pick task retry that task (RESUME RETRY) in order to account for scene
changes resulting from recovery execution. We show a selection of these pick
recoveries in action, as well as other example recovery behaviors selected from
our FetchIt! competition runs, in the video supplement to this paper15. At the
competition, we recovered from all errors in the pick task, thanks to the task
monitor’s utilities.

6 Discussion

We conclude with a discussion of lessons learned using our RDD-inspired task
execution and monitoring system at the FetchIt! Challenge.

Testing early and often. The ability to repeatedly test the robot system in
its target environment is a critical requirement for the robustness benefits of
RDD–simulation alone will likely not lead to the same level of robustness. As
such, RDD is not suited to hazardous or remote environments, such as space

15 We also provide an HD version of the video here: https://youtu.be/AcOdT10q 94
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robotics. However, many target environments for robots are neither inaccessible
nor catastrophically hazardous, and are therefore compatible with RDD.

Stochasticity in behaviors. As mentioned in Section 4.2, failure recovery re-
quires a high degree of variety in recovery mechanisms. We have found that a
degree of non-determinism at the robot’s behavior level facilitates such recov-
eries. For instance, our sampling-based ranking approaches to object selection,
grasp calculation, and place pose calculation provided the robot with successful
alternatives when retrying actions after previous action attempts failed.

Planning layer integration. Recipe-based tasks can admit multiple recipes,
which need to be selected or rescheduled at runtime based on factors such as
time constraints or major execution errors. Predefined scripts, such as those
created during RDD specification phases, cannot easily handle such situations.
The shortcoming can, however, be addressed by the higher level planning layer
in the robot architecture. We found that the level of abstraction used in our
hierarchical executive layer recipe scripts made the specification of our planning
layer almost trivial. Additionally, the executor and monitor utilities we developed
(e.g. beliefs) were a great help in the planning layer.

In conclusion, the RDD methodology of separating the nominal task specifi-
cation from recovery specification provides numerous benefits, which our team
validated at the FetchIt! Challenge. Our use of RDD (1) allowed rapid develop-
ment of the task and recoveries, (2) enabled independent testing and efficient
re-use through abstraction for tasks and recoveries, (3) necessitated the devel-
opment of system utilities that ultimately proved valuable in other aspects of
system development, and most importantly, (4) afforded our system a level of
robustness that would have been more difficult or time-consuming to achieve
through other means.
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