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Abstract— Robots operating without close human supervision
might need to rely on a remote call center of operators for
assistance in the event of a failure. In this work, we investigate
the effects of providing decision support through diagnosis sug-
gestions, as feedback, and action recommendations, as feedfor-
ward, to the human operators. We conduct a 10-condition user
study involving 200 participants on Amazon Mechanical Turk to
evaluate the effects of providing noisy and noise-free diagnosis
suggestions and/or action recommendations to operators. We
find that although action recommendations (feedforward) have
a greater effect on successful error resolution than diagnosis
information (feedback), the feedback likely helps ameliorate
the deleterious effects of noise. Therefore, we find that error
recovery interfaces should display both diagnosis and action
recommendations for maximum effectiveness.

I. INTRODUCTION

As autonomy improves, robots are increasingly operating
without close expert supervision. Robots making hospital
deliveries, taking inventory at grocery stores, or organizing
a warehouse operate largely independently but occasionally
encounter an error. In such cases, it is unlikely that a local
robotics expert will be available, and the robot will instead
rely on remote call center of operators for assistance [1].
The operators are likely to have available an interface that is
designed to help resolve the robots’ failure. This work inves-
tigates the effects of decision support in such an interface.

Prevalent guidelines for designing the user experience
(UX) for a failure resolution system suggest that in the
face of failure, operators should be provided with feedback
information—to be made better aware of the failure state—
and with feedforward information—to better enable decision-
making [2]. However, it is unclear from the prior literature
on UX [3], [4] which of feedback or feedforward information
could be more useful to robot failure resolution.

The importance of knowing the relative benefits of feed-
forward and feedback is highlighted by recent work, which
has recommended that interfaces designed for error recovery
not overwhelm the information processing capabilities of op-
erators, lest operators themselves make mistakes [5]. Despite
their usefulness, both feedback, such as through automated
diagnoses, and feedforward, such as through action recom-
mendations, can potentially add too much information to an
interface. It is unclear from prior work if such is the case.

In addition to receiving too much information, an oper-
ator’s information processing capabilities can be taxed in
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Fig. 1: Storyboard for interactive failure recovery. Participants start
in one of four failure scenarios and attempt to resolve the error
by selecting one of 17 actions, which the robot then executes in
an accompanying video. We evaluate the action sequence taken
by participants under different interface conditions, and how it
compares to the shortest possible error recovery (green arrows)1.

dealing with inaccuracies with decision aids: for instance,
feedback provided through automated fault diagnosis sys-
tems or feedforward provided through action recommenda-
tion models can be imperfect, resulting in robots deployed
with inaccurate decision aids. Prior work has shown that in
the face of incorrect suggestions, humans are prone to both
follow the recommendations [6] and to ignore them [7]. It
is therefore important to determine how inaccurate decision
aids might affect the resolution of robot failures.

In this work, we contribute a 10-condition study evalu-
ating the effects of providing noisy and noise-free diagno-
sis suggestions (feedback) and/or action recommendations
(feedforward) as decision aids to humans. We perform our
analysis within an interactive user experience, in which users
select robot recovery actions in response to observed error
states. The interactive experience occurs in the context of a
dynamically generated story graph in which nodes are faulty
or fault-free robot states. The story nodes are connected by
edges corresponding to one of 17 actions, captured as 285
videos of a physical Fetch robot, and which are selected
by the participants (Fig. 1). The resulting highly realistic
evaluation framework enables us to examine how elements of
UX design impact a user’s ability to effectively recover from
robot errors. Our findings show that although action recom-
mendations (feedforward) have a greater effect on success-
ful error resolution than diagnosis information (feedback),
the feedback likely helps ameliorate the deleterious effects
of noise. Therefore, we find that error recovery interfaces
should display both diagnosis and action recommendations
for maximum effectiveness.

1A video showing the study design is at https://youtu.be/drCHgwkpaqA

https://youtu.be/drCHgwkpaqA


II. RELATED WORK

Robust robot execution is difficult to achieve. To address
this challenge, prior research has proposed techniques for
adjustable autonomy in order to enable humans to assist
during difficult tasks [8]. A previous ethnographic study
of a robot in various work environments found that even
when collocated, humans tasked with intervening on behalf
of the robot wanted assistance addressing two fundamental
questions, “What’s wrong?” and “How do I fix it?” [9]. The
finding is consistent with prevalent design guidelines that
in the face of failure, operators should be provided with
feedback information—to be made better aware of the failure
state—and with feedforward information—to better enable
decision-making [2].

Prior work has introduced decision aids to help operators
capture high level problem diagnosis [8], [10], assist with
action selection or planning [11], [12], [13], or both [14],
[15]. Furthermore, failure recovery (i.e., troubleshooting) is
often an iterative process during which failure hypotheses
and/or recovery actions are pruned through execution of
diagnostic test actions [16], [17]. Automated troubleshooting
aids are usually equipped with the capability to suggest po-
tential problems and to recommend actions to fix them [18],
[14], [15], [19]. However, automated diagnosis or action
recommender systems are not perfect [20], [21]. As a result,
robots must often be deployed with imperfect decision aids.

Prior work has shown that in the face of errors in
robot decision support systems, humans are prone to both
overtrust its recommendations—following them to their
detriment [6]—as well as mistrust its recommendations—
ignoring them to their detriment [7]. It is therefore unclear
what the effects of imperfect decision support systems might
be in the case of robot failure recovery, a scenario not
evaluated in the aforementioned studies. We bridge that gap.

Additionally, a recent survey calls into question a naı̈ve
recommendation to include both the feedback and feed-
forward decision aids because the authors find that failure
recovery can be a cognitively demanding task for an operator
and argue that the interfaces used must not overwhelm the
information processing capabilities of a human [5]. They
cite the prevailing design knowledge that humans are liable
to themselves make errors if they are overwhelmed with
too-much-information [4], [2]. Additional research in UX
design has found that feedforward suggestions in widgets
are especially suitable in applications that users might be
unfamiliar with [3], but it is unclear whether the finding
generalizes to robot error recovery, as well as when noise
is present in feedforward output. We aim to identify the
tradeoffs, if any, that might exist from providing either types
of decision support to remote operators during robot failures.

Finally, while prior work has evaluated the interaction
consequences of failure presentation, none evaluate the con-
sequences on the robot’s performance. Lee et al. [22] used
online surveys to gauge participant evaluations of a robot’s
service based on the manner of robot communication during
a failure; participants were not required to aid the robot based
on the information presented to them. Similarly, Brooks et

al. [23] introduced two types of decision support—human-
support and task-support, which correspond to feedback and
feedforward respectively—and found that people’s reactions
towards the robot were improved as a result of both types.
However, their evaluations were conducted using survey
responses to hypothetical scenarios and participants were
not actually required to supervise a robot based on the
information they received. In contrast, we allow people to
supervise the execution of a robot during a failure, and we
evaluate the robot’s recovery outcome as a result of varying
types of decision support.

III. RESEARCH QUESTIONS

In this work, we evaluate the relative benefits of both
feedback and feedforward information by evaluating the
following decision support for robot failures:
• Diagnosis-based Suggestion—the diagnosis of one or

more faults (feedback). For example, “The [object] is not
visible”, (if a perception action fails) or “The robot has
collided” (if the base of the robot is unable to move).
• Action-based Recommendation—the recommendation

of actions to take to resolve the problem (feedforward). For
example, “Navigate to [location]” (to perhaps check for a
missing object), or “Move the robot back” (assuming the
collision is at the front).

Despite several independent systems for diagnosis and
recommendation having been developed (Sec. II), their rel-
ative benefit when used either independently or together
remains unexplored. Furthermore, automated diagnosis or
recommendation systems have their own limitations, lead-
ing to imperfect performance [20], [21]. As a result, it is
important that we understand how the relative benefits of
both techniques are affected by their accuracy.

In this work, we study how various types of decision
support aids, under varying levels of performance noise,
affect the user’s ability to effectively recover from errors.
Specifically, we formulate the following research questions:
RQ1 How is a human operator’s assistance of a robot

affected by Action Recommendations (AX), Diagnosis Sug-
gestions (DX), or both (DXAX)? We formulate this first
question to investigate the types of decision support that
might be necessary in a failure resolution UX.

RQ2 What is the effect of inaccuracies in the decision
support provided to human operators? The aim of this
second question is to investigate trends in human operator
performance as the reliability of decision support varies.
To answer RQ1-RQ2, we designed a large scale user

study using Amazon Mechanical Turk, in which we varied
two factors determining the manner of generating decision
aids. The first factor determined the type of suggestions that
participants received—no suggestions (BASELINE), Action
Recommendations (AX), Diagnosis Suggestions (DX), or
both (DXAX). The second factor determined the accuracy
of the suggestions at three levels often achieved by fault
diagnosis models in prior work [24]—100% accurate, 90%
accurate, and 80% accurate. The resulting ten study condi-
tions are enumerated in Table I.



Fig. 2: The robot is in a mock apartment with three locations. It
can work with the Jug, Cup, and Bowl (left-to-right in inset).

IV. DOMAIN
We situated our investigation in a mock apartment environ-

ment, with a Fetch mobile manipulator performing an object
retrieval task (Fig. 2). We chose the apartment environment
as one that would be familiar to study participants, and the
retrieval task due to its intuitive nature and the diversity of
potential errors [25], many of which are also common in
other applications (e.g. occlusion of objects) [26].

We conducted our experiment online by simulating the
experience of a participant remotely controlling the robot.
Participants were told that they would be using a web
interface (Fig. 3) to guide the robot through error recov-
ery. In reality, in response to their actions, the interface
would display videos that showed the robot executing the
target behavior. All videos were pre-recorded for consistency
and scalability of the experiment. As shown in Fig. 1,
we recorded 285 videos representing a rich storyboard of
potential recovery behaviors.

In addition to the video of the robot’s action execution,
the interface displayed a summary of the task objective and
showed a history of participant actions alongside the results
of those actions (i.e., success/failure). Using this information,
at each step of the experiment participants could (1) indicate
their diagnoses of problems with the robot from a set of 11
possible problems, D, and (2) select the next action to take
to resolve the problem from a list of 17 possible actions, A.

A. Task Scenarios
The robot’s environment consisted of three possible lo-

cations the robot could navigate to: couch, dining table,
and kitchen counter. Three manipulable objects were present
in the environment: bowl, jug, and cup. The robot was
able to navigate to locations depending on localization, as
well as recognize the three objects or pick up and place
them, resulting in 13 possible object-action combinations. To
construct an experiment storyboard, we modeled the state as
the state of the robot, the objects, and the presence of any of
the failures described below, and then applied deterministic
action transitions based on predetermined action precondi-
tions (e.g., executing pickup(obj) would cause the robot to
pick up the obj if it was unoccluded in front of the robot).

In each experiment, the robot started in one of four errors,
F1–4, described below. The common task objective (i.e.,
terminal condition of the experiment) was for the robot to

be located near the couch while holding the cup. In the
absence of errors, this objective could be achieved by the
robot navigating to the kitchen counter, picking up the cup
(Fig. 2), and taking it to the couch.

To facilitate our goal of evaluating decision support sug-
gestions for robot failures, we injected an error into each
participant trial in order to study the participant’s recovery
behavior. Each failure scenario, and corresponding start state,
represents a type of error commonly encountered in robot
task execution [26]:
F1: Mismatch between design and the environment where

the objects are actually at a location different from the one
specified in the nominal task objective. Participants started
with a view of an empty kitchen counter and needed to find
the objects, which were on the dining table. Min. recovery
steps: 3.

F2: Non-fatal cause of a failure where the robot was mislo-
calized so that navigation commands were remapped, which
then triggers a failure while trying to find the objects.
E.g. the command “Navigate to [locationA]” sent the robot
to [locationB] instead. As a symptom of the remapping,
participants started with a view of an empty dining table.
Min. recovery steps: 4.

F3: Environment occlusion, with the jug occluding the cup
on the kitchen counter. The scenario also showcases aliased
faults, because visually this failure is similar to F1. Min.
recovery steps: 4.

F4: Multiple concurrent faults. The task was misspecified
(F1), the jug occluded the cup (F3), and the bowl was placed
on top of the cup requiring it to also be moved out of the
way (an additional fault). Min. recovery steps: 7.

B. Suggestions
Depending on the study condition, participants were

shown three diagnosis suggestions and/or three action recom-
mendations. Stars were used to recommend diagnosis/actions
to participants in the user interface (UI) shown in Fig. 3b.
Instructional text in the UI notified participants that the
number of stars was a proxy for model certainty. We provided
a ranked list of suggestions without numerical values as a
result of recommendations from prior work [7].

Diagnoses: There were 11 total diagnoses, such that D =
Dnone

⋃
Dfault

⋃
Ddistractors, where Dnone indicated no

fault in the current robot execution, |Dfault| = 4 corre-
sponded to four failures from the scenarios above (unknown
to participants ahead of time), and |Ddistractors| = 6
represented distractor diagnoses that never occurred in the
experiments (e.g., There is a problem with the camera).
Based on the pilot studies, all diagnoses were assigned easy-
to-understand labels, e.g., the term “gripper” was substituted
with “hand” because the latter is more accessible to the
general public. Each robot state was associated with one or
more diagnoses in the set Dnone

⋃
Dfault and we used a

lookup table to suggest diagnoses to participants (suggestions
were padded to three by random sampling of D).

Actions: There were 17 total actions, such that A =
Adomain

⋃
Adistractor, where |Adomain| = 13 corresponded



(a) (b)
Fig. 3: (a) The web UI for participants in the BASELINE condition. The red annotations are for illustration purposes only. (b) Examples
of starred suggestions for diagnoses (top) and for actions (bottom).

Suggestion Type Acc: 80% Acc: 90% Acc: 100%
No suggestions - - BASELINE∗
AX AX80 AX90 AX100
DX DX80 DX90 DX100
DX & AX DXAX80 DXAX90 DXAX100
∗Baseline does not provide feedback, so has no associated accuracy

TABLE I: Study Conditions.

to the 13 object-action combinations defined with the domain
(above), and |Adistractor| = 4 represented distractor actions
that did not cause any visible changes in the participant
videos (e.g., Restart the camera). Participants could select
any of the 17 actions at all times. When presenting action
recommendations, we included the optimal action (i.e., the
action on the trajectory with the least number of actions to
the goal) as the highest priority, and then randomly chose
from the remaining executable actions at the state (i.e.,
actions that would succeed) in order to present a total of
three recommendations.

Modulating Accuracy: We provided the participant with
three incorrect suggestions if the study condition required
it. For diagnosis suggestions, we used three random choices
among all the diagnoses that were not applicable in the robot
state. For action recommendations, we made three random
choices among all actions that could successfully execute in
the state, taking care to not select the optimal action. In the
DXAX conditions, action recommendations were corrupted
when diagnosis suggestions were corrupted.

V. EXPERIMENT PROCEDURE

We conducted a 4x3 between-subjects fractional factorial
experiment, with a total of 10 conditions (Table I).
A. Protocol

We recruited 200 participants through Amazon Mechanical
Turk, with 20 participants per condition. The study was
designed to take 20 minutes and participants were compen-
sated $4 for their time. After providing basic demographic
information, participants were introduced to the robot system
through an instructional web page containing an accompany-
ing video (available at https://youtu.be/0jYuxLTKlyM) to familiar-
ize them with the domain. They were then asked five yes/no

knowledge review questions to test their understanding of
the task. Participant data was discarded if participants failed
the review questions more than five times or refreshed the
browser during the experiment.

Participants who passed the knowledge review were pre-
sented with the UI introduced in Sec. IV and allowed up to 20
actions to assist the robot. Within the 20 actions, participants
in the 90% accuracy conditions received inaccurate AX
and/or DX suggestions on the 2nd and 12th actions (if they
took at least 12 actions), and participants in the 80% accuracy
conditions received inaccurate suggestions on the 2nd, 5th,
12th, and 15th actions. Once a participant resolved the error
or exhausted their budget of 20 actions, they were directed
to a post-study usability questionnaire.

B. Metrics & Hypotheses

We evaluate the following performance metrics:
1. Failure resolution rate (FRR): The failure scenario is
considered resolved if the participant accomplishes the
robot’s goal within the budget of 20 actions. FRR captures
the likelihood of a participant resolving a failure scenario.

2. Rate of optimal action selection (RAX): Each state has
an optimal action that leads to the goal in the shortest
number of actions (Sec. IV). RAX examines the propensity
of participants to select the optimal action and is a measure
of operator reliance on decision support [28].

3. Rate of correct diagnosis selection (RDX): Each state
corresponds to a set of correct fault diagnoses (Sec. IV-
B). RDX examines the propensity of participants to select
at least one of those diagnoses and is a measure of operator
reliance on decision support [28].

4. Compliance with AX suggestions (CAX): When provided
with action recommendations (in the AX or DXAX condi-
tions), CAX captures participants’ likelihood of following
those suggestions and is a measure of operator compliance
with decision support [28].

5. Compliance with DX suggestions (CDX): When provided
with diagnosis suggestions (in the DX or DXAX condi-

https://youtu.be/0jYuxLTKlyM


Metrics (data type) Assumed Model Parameter Priors ROPE

FRR
(binary)

metrici ∼ Bernoulli(pi)
logit(pi) = β0 +Xcontrol,iβcontrol+

Xcondition,iβcondition

β· ∼ N (0, 10) [-0.055, 0.055]

RAX, RDX,
CAX, CDX

(binary)

metricij ∼ Bernoulli(pij)
logit(pij) = β0 + β0,i +Xcontrol,iβcontrol+

Xcondition,iβcondition +Xstateijβstate

β· ∼ N (0, 10)

β0,i ∼ N (0, σi)

σi ∼ HalfStudent(3, 0, 10)
[-0.055, 0.055]

SUS
(interval from 0–100)

metrici ∼ SkewNormal(µi, σ, α)
µi = β0 +Xcontrol,iβcontrol+

Xcondition,iβcondition

β· ∼ N (0, 10)

σ ∼ HalfStudent(3, 0, 22)
α ∼ N (0, 4)

[-2.3, 2.3]
(0.1 ∗ SD[metric])

TABLE II: The assumed Generalized Linear Mixed Models for each of the metrics in the analyses. In the models, i indexes a participant,
and j is the jth action taken by participant i. ROPE is set based on recommendations by Kruschke [27].

tions), CDX captures participants’ likelihood of following
those suggestions and is a measure of operator compliance
with decision support [28].

6. System Usability Scale (SUS): The SUS is a 10-item
Likert scale used the measure the usability of the UX [29]
and was administered to participants in the post-study
questionnaire. In our study, the reliability rating, Cronbach’s
α, for items in this instrument was 0.94.

The hypotheses associated with each of the above metrics
are enumerated in Table III. Each metric is associated with
two hypotheses pertaining to each of the two research
questions that motivate this work.

C. Bayesian Data Analysis

We draw our conclusions from a Bayesian analysis per-
formed on Generalized Linear Mixed Models over the data.
The Bayesian analysis allows us to quantify both the like-
lihood for the existence of an effect as well as a practical
estimate of the significance of that effect. To perform the
analysis, we assume that all our metrics are generated under
a structural model with the following explanatory variables:
• Xcondition,i=XType,i+XAcc,i: A suggestion type factor
(Type∈{BASELINE, AX, DX, DXAX}) and an accuracy
factor (Acc∈{80%, 90%, 100%}). We encode the Type fac-
tor as Helmert contrasts and report the effects of AX, DX,
and DXAX levels vs. the BASELINE level. We encode the
Acc factor as orthogonal polynomials in order to investigate
linear or quadratic trends in the effects of the factor. Our
model does not include interaction effects between Type
and Acc in order to preserve model identifiability.
• Xcontrol,i: The demographics of a participant and the
failure scenario (F1–4) they were assigned.
• Xstate,ij , β0,i (for RAX, RDX, CAX, & CDX): The state

of the robot and a random intercept effect of the participant.
Depending on the nature of a metric’s data (i.e. binary, count,
etc.), we fit recommended probability distributions [30] us-
ing Maximum Likelihood Estimation (MLE). The chosen
distribution is the one that had the lowest AIC of fit. The
probability distribution and the model we used in the analysis
of each metric are listed in Table II.

In order to perform Bayesian analysis, we formulate a null
hypothesis of minimal effect based on the nature of the data:
this is called the Region of Practical Equivalence (ROPE).
For instance, we can set the ROPE to be [-0.055, 0.055]

for binary data, which then implies that effects resulting
in a likely change of less than 0.055 (within the ROPE
interval) are considered insignificant (we cannot reject the
null hypothesis). The ROPE for each analysis are in Table II.

We begin the analysis by initializing model parameters
with weak priors (e.g. N (0, 10)). We then sample parameters
for models that might explain the observed data using
Hamiltonian Monte-Carlo sampling [30], [32]. We use 4
chains with a burn-in of 1000 iterations, before sampling
for 1000 iterations to get the the posterior distribution of the
parameters. We verify the diagnostics of the convergence of
the samples using established methods involving Leave-One
Out Cross-Validation [33]. Note that the posterior distribu-
tions of the parameters imply a posterior distribution on the
metrics’ values. Our inferences on the effects of interest are
performed using the posterior distributions.

Using the guidelines presented in [34], we report:
1. A Probability of Direction [pd], which quantifies the
likelihood of the existence of an effect.

2. The Median and the 89% High Density Credible Intervals
(CI) of effect sizes. Effect sizes are classified from Median
estimates using the thresholds in prior work [31].

3. The degree of overlap of the full posterior distribution of
the metric with the ROPE. The value is used to reject (or
not) the null hypothesis on the significance of the effect.

Due to limitations of space, we report only a subset of
the data analyzed in this paper. Interested readers can find
the complete analysis, including model diagnostics and the
effects of non-condition factors at https://bit.ly/2UjPPtE.

VI. RESULTS

Table III summarizes our research hypotheses and key
results of the study, which we discuss in detail in this section.

Demographics: Our experiment consisted of 200 partici-
pants (age group mode 26–30 years, 36.5% / 63% / 0.5% fe-
male/male/unspecified gender). The majority of participants
(166/200) interacted with a robot at most three times a year.

Failure Resolution Rate (FRR): Fig. 4a shows the pro-
portion of participants that resolved the fault for a given
condition. Across conditions, the FRR ranged from 0.6
(DX90) to 1.0 (AX100).

On evaluating H1FRR, we find that the resolution rate
with action suggestions (AX) compared to BASELINE has a
97.2% [pd] of being positive (Median = 1.89, 89% CI [0.29,

https://bit.ly/2UjPPtE


Metric Hypotheses
Metric

better with
AX

Metric
better with

DX

Metric
better with

DXAX

Metric trend
with Acc. is

Linear

Metric trend
with Acc. is
Quadratic

FRR H1FRR: FRR increases with suggestions than without.
H2FRR: FRR increases with suggestion accuracy.

97.2% [pd]
***

96.2% [pd]
***

U-shape
97.0% [pd]

*

RAX H1RAX: RAX increases with suggestions than without.
H2RAX: RAX increases with suggestion accuracy.

97.0% [pd]
**

99.0% [pd]
**

RDX H1RDX: RDX increases with suggestions than without.
H2RDX: RDX increases with suggestion accuracy.

97.8% [pd]
*

98.7% [pd]
**

Positive slope
99.3% [pd]

*

CAX H1CAX: CAX improves with DX suggestions.
H2CAX: CAX increases with suggestion accuracy. N/A‡

CDX H1CDX: CDX improves with AX suggestions.
H2CDX: CDX increases with suggestion accuracy. N/A‡

Positive slope
100% [pd]

*

SUS H1SUS: SUS increases with suggestions than without.
H2SUS: SUS increases with suggestion accuracy.

98.9% [pd]
n.s.

95.2% [pd]
n.s.

‡ CAX (CDX) does not apply when AX (DX) is not present.

TABLE III: Metrics, hypotheses, and the main effects results from the data analysis (Sec. V-C). In the results columns, we report in the
table if [pd] >95%. We show an effect size if the overlap in ROPE is <2.5%. Effect sizes are indicated by the asterisks: *** for a large
effect (Std.Median >.8), ** for a medium effect (Std.Median >.5). and * for a small effect (Std.Median >.2) [31].

3.37]) and can be considered large (Std.Median = 1.04) and
significant (0.73% in ROPE) [ROPE (full)]. We also find that
the resolution rate with both suggestions (DXAX) compared
to BASELINE has a 96.2% [pd] of being positive (Median
= 1.57, 89% CI [0.16, 2.97]) and can be considered large
(Std.Median = 0.87) and significant (1.15% in ROPE) [ROPE
(full)]. As seen in Fig. 5a, the results indicate that adding
action suggestions (AX and DXAX) greatly increases the
probability of the participants resolving the robot’s faults.

On evaluating H2FRR, we find that the noise level has a
quadratic relationship to the probability of fault resolution
with a 97.0% [pd] positive effect size (convex-shape) (Me-
dian = 0.77, 89% CI [0.12, 1.40]), which can be considered
small (Std.Median = 0.42) and significant (1.75% in ROPE)
[ROPE (full)]. Therefore, as seen in Fig. 5b, the data suggests
that as the accuracy of suggestions increases, there is a U-
shaped relationship to participant performance.

Rate of optimal action selection (RAX): Fig. 4b shows the
proportion of optimal actions taken by participants in each
study condition. Across conditions, the Median RAX ranged
from 0.50 (DX100, DX80) to 0.76 (AX100).

On evaluating H1RAX, we find that the optimal action rate
with action suggestions (AX) compared to BASELINE has
a 97.0% [pd] of being positive (Median = 1.03, 89% CI
[0.16, 1.95]) and can be considered medium (Std.Median =
0.57) and significant (1.98% in ROPE) [ROPE (full)]. We
also find that the optimal action rate with both suggestions
(DXAX) compared to BASELINE has a 99.0% [pd] of being
positive (Median = 1.20, 89% CI [0.39, 2.09]) and can
be considered medium (Std.Median = 0.66) and significant
(0.50% in ROPE) [ROPE (full)]. As seen in Fig. 5c, the
results indicate that adding action suggestions (AX and
DXAX) greatly increases the likelihood that participants take
the desired actions to resolve a failure.

On evaluating H2RAX, we find no significant effect of the
optimal action rate with the accuracy of the suggestions.

Rate of correct diagnosis selection (RDX): Fig. 4c shows

the proportion of of correct diagnoses made by participants
in each study condition. Across conditions, the Median RDX
ranged from 0.59 (DX80) to 0.86 (DX100).

On evaluating H1RDX, we find that the correct diag-
nosis rate with diagnosis suggestions (DX) compared to
BASELINE has a 97.8% [pd] of being positive (Median
= 0.82, 89% CI [0.15, 1.51]) and can be considered small
(Std.Median = 0.45) and significant (1.60% in ROPE) [ROPE
(full)]. We also find that the correct diagnosis rate with
both suggestions (DXAX) compared to BASELINE has a
98.7% [pd] of being positive (Median = 0.92, 89% CI [0.22,
1.60]) and can be considered medium (Std.Median = 0.51)
and significant (0.98% in ROPE) [ROPE (full)]. As seen in
Fig. 5d, the results indicate that adding diagnosis suggestions
(DX and DXAX) results in more correct diagnoses.

On evaluating H2RDX, we find a 99.3% [pd] positive
effect (positive slope) of accuracy in suggestions to correct
diagnosis rate (Median = 0.48, 89% CI [0.16, 0.79]), which
can be considered small (Std.Median = 0.26) and significant
(1.25% in ROPE) [ROPE (full)]. As shown in Fig. 5e, there
is a linear improvement in the rate of correct diagnoses from
participants as the accuracy of suggestions improves.

Compliance with AX suggestions (CAX): Fig. 4d shows
the proportion of participants that complied with action
suggestions in the conditions that received AX suggestions
(AX & DXAX). Across conditions, the Median CAX ranged
from 0.55 (AX90) to 0.76 (AX100). On evaluating H1CAX and
H2CAX, we find no significant effects of either diagnosis sug-
gestions (DXAX vs. AX) or the accuracy of the suggestions.

Compliance with DX suggestions (CDX): Fig. 4e shows
the proportion of participants that complied with diagnosis
suggestions in the conditions that received DX suggestions
(DX & DXAX). Across conditions, the Median CDX ranged
from 0.66 (DX80) to 0.88 (DX100).

On evaluating H1CDX, we find no significant effects of
action suggestions (DXAX vs. AX) on the compliance rate.
On evaluating H2CDX, we find that there is a 100% [pd]
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Fig. 4: Study data for each of the metrics defined in Table III.

(a) FRR v. Type (b) FRR v. Acc. (c) RAX v. Type (d) RDX v. Type (e) RDX v. Acc. (f) CDX v. Acc.

Fig. 5: Predicted Median of the posterior of significant effects after Bayesian analysis. Asterisks indicate effect sizes (see Table III).
Points in the figure represent data from the study; larger points indicate more data instances with the same value.

positive effect (positive slope) of accuracy in suggestions to
the rate of compliance with suggestions (Median = 0.77, 89%
CI [0.39, 1.11]), which can be considered small (Std.Median
= 0.42) and significant (0.08% in ROPE) [ROPE (full)].
As shown in Fig. 5f, the compliance of participants with
diagnosis suggestions improves as the accuracy improves.

System Usability Scale (SUS): Fig. 4f shows the responses
of participants to the SUS questionnaire across the different
conditions. Across conditions, the median SUS scores range
from 66 (DX90) to 76 (DXAX90).

On evaluating H1SUS, we find that the score with action
suggestions (AX) compared to BASELINE has a 98.9%
[pd] of being positive (Median = 11.68, 89% CI [3.82,
19.0]), which can be considered medium (Std.Median =
0.56) but not significant (3.02% in ROPE) [ROPE (full)].
We also find that the SUS score with diagnosis suggestions
(DX) compared to BASELINE has a 95.2% [pd] of being
positive (Median = 8.16, 89% CI [1.17, 16.04]), which can
be considered small (Std.Median = 0.38) but not significant
(9.48% in ROPE) [ROPE (full)]. The results indicate that
adding suggestions, AX or DX, but not both (DXAX), might
result in greater usability.

On evaluating H2SUS, we find that the accuracy of sug-
gestions does not affect the usability score.

VII. DISCUSSION AND CONCLUSIONS
In this section, we discuss the implications of the statistical

results presented above. We frame the discussion in relation
to our research questions, with potential guidelines for future
UX development highlighted in bold.
RQ1—Type of Decision Support: Error recovery systems
should display both feedback and feedforward infor-

mation for maximum effectiveness. From the results of
evaluating H1RAX and H1RDX, we find that participants are
more likely to select the correct failure resolution actions
if feedforward action recommendations (AX) are provided,
and more likely to select the correct problem diagnoses if
feedback as diagnosis suggestions (DX) are provided. Oper-
ators perform both functions in most common error recovery
scenarios, with diagnosis typically informing identification of
subsequent actions [14], [19], [15]. As a result, most systems
should display both feedforward and feedback information.

Feedforward information has a greater effect on suc-
cessful error resolution than feedback information. Anal-
ysis of the failure resolution rate metric in the context of
H1FRR highlights that participant ability to successfully re-
cover from errors was greatest in the presence of feedforward
action recommendations (AX & DXAX conditions) than
when presented with feedback diagnosis information alone
(DX). The result, consistent with UX research [3], demon-
strates that although diagnosis suggestions aid in greater
understanding of the overall state of the system (as shown by
RDX results), feedforward information, suggesting “what-to-
do” is more effective in leading to the correct solution.
RQ2—Decision Support Accuracy: If the feedforward in-
formation is noisy (as in most systems), supplementing
feedforward with feedback information (even if also
noisy) leads to effective recovery strategies. Analysis of
the failure resolution rate metric in the context of H2FRR
highlights that participant performance was significantly af-
fected by accuracy levels. Specifically, we observe a U-
shaped response in which participant performance is likely
to drop significantly in the 90% accuracy conditions. The



drop is likely evidence of overtrust in the system [6].
However, Fig. 4a and Fig. 4b provide an indication that
the performance drop might not be present in the DXAX
conditions, indicating that diagnosis information, and the
situational awareness that users might gain from it, can help
ameliorate overtrust in the faulty system.
Additional Findings: Evaluating H2CDX, we find that the
compliance of participants with the suggestions linearly
improves with the accuracy of the suggestions. The finding
is consistent with prior work, which has found that operator
compliance is dependent on the reliability of the decision
support [28], [7]. Additionally, we find that there is a linear
improvement in participants choosing the correct diagnoses
(RDX) as the accuracy of suggestions improves, showing
that reliance on decision support can also be dependent on
the reliability of the decision support [28].

Evaluating H1SUS, we find that both feedforward (AX)
suggestions and feedback (DX) suggestions might indepen-
dently improve the usability of an error recovery UX over
a baseline without decision support, but the same might not
hold true when both are present (DXAX). While the result
might indicate a potential problem of too-much-information,
further investigation is needed because the independent ef-
fects of DX and AX were not considered to be of practical
significance (based on overlap within the ROPE).
Final Conclusions: In summary, we find that users are most
effective in guiding error recovery when both feedback-
focused diagnosis information and feedforward-focused ac-
tion suggestions are presented. Note that further studies are
required to better understand the above effects. For instance,
we evaluated non-experts for whom diagnosis suggestions
might not have been as useful as for experts. Additionally,
when inaccurate, our suggestions for diagnoses and actions
were inaccurate at the same time, but an accurate diagnosis
might have ameliorated inaccurate action recommendations,
or vice-versa. Future work can study the additional factors.
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