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Robot Classification of Human Interruptibility and a Study

of Its Effects

SIDDHARTHA BANERJEE, ANDREW SILVA, and SONIA CHERNOVA,
Georgia Institute of Technology

As robots become increasingly prevalent in human environments, there will inevitably be times when the ro-

bot needs to interrupt a human to initiate an interaction. Our work introduces the first interruptibility-aware

mobile-robot system, which uses social and contextual cues online to accurately determine when to inter-

rupt a person. We evaluate multiple non-temporal and temporal models on the interruptibility classification

task, and show that a variant of Conditional Random Fields (CRFs), the Latent-Dynamic CRF, is the most

robust, accurate, and appropriate model for use on our system. Additionally, we evaluate different classifi-

cation features and show that the observed demeanor of a person can help in interruptibility classification;

but in the presence of detection noise, robust detection of object labels as a visual cue to the interruption

context can improve interruptibility estimates. Finally, we deploy our system in a large-scale user study to

understand the effects of interruptibility-awareness on human-task performance, robot-task performance,

and on human interpretation of the robot’s social aptitude. Our results show that while participants are able

to maintain task performance, even in the presence of interruptions, interruptibility-awareness improves the

robot’s task performance and improves participant social perceptions of the robot.
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1 INTRODUCTION

Interruptions are distracting, potentially leading to task performance penalties [39, 61], stress [37,
39], antipathy [45], and even catastrophe [53, 56], depending on the context. In the context of
technology-driven interruptions, a large body of work in human factors engineering (HFE) and
human-computer interaction (HCI) research has studied interruptions and ways of mitigating their
effects. Prior research has specifically identified the appropriateness of the timing of an interrup-

tion as one of the most important factors dictating interruption consequences [39, 41, 53, 61]. The
appropriateness of timing is referred to as interruptibility [62] and it is itself the focus of much
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research [67]. Low interruptibility signifies a person’s desire to not be disturbed, while high inter-
ruptibility signifies that the person could be amenable to an interruption.

Today’s robots have no interruptibility awareness, despite the fact that interactive robots are
increasingly deployed in human environments. Many robot control architectures being developed
in the research community for interactive applications enable robots to not only follow human in-
structions, but also to actively engage with a person to offer a service [9] or to ask for help [19, 54].
As a result, robots performing deliveries, taking store inventory, organizing warehouses, and col-
laboratively working alongside humans on factory production lines increasingly have the poten-
tial to interrupt people, without any measure of the appropriateness or costs of such interruptions.
Extrapolating results from prior research [40, 43] to the domain of embodied robot interactions
suggests that inappropriate interruptions may have significant effects on many factors, including

—negatively impacting human task performance, if people are interrupted at inappropriate
times,

—negatively impacting robot task performance, as the robot wastes time attempting to inter-
act with a person not receptive to the interaction, and

—negatively impacting a person’s social perception of the robot, and ultimately their willing-
ness to use it.

In order to develop robots that appropriately handle interruptions, it is important to determine
when a robot should interrupt, and how it should behave during an interruption. Prior work has
explored how a robot should behave during interruptions by studying multiple approaches for
engaging people [13, 58]. In this article, we address the former question. Expanding on results
previously presented in Refs [3] and [4], we describe a self-contained interruptibility-aware mobile
robot system and present a detailed analysis of the effects of interruptibility-aware behavior on
the factors listed above.

We begin by examining the following research questions:

RQ1 Which computational features are useful in allowing a robot to classify interruptibility in
an unstructured world?

RQ2 What is a robust model for obtaining interruptibility estimates from the proposed features?

In our examination, we first contribute an ordinal scale of interruptibility that can be used to
rate the interruptibility of a person and to influence decisions on whether or not to interrupt them
(Section 3). Second, derived from factors used by humans to gauge interruptibility [53], we propose
using features for person state (motivated by prior work in robotics on the closely related problem
of estimating human engagement [42]) and features for interruption context (inspired by cues to
interruptibility context used in prior work [47]) to classify interruptibility (Section 4). Last, we
introduce the non-temporal and temporal models that we evaluated (Section 5) and the dataset of
person observations that the models were evaluated upon (Section 6).

Our results (Section 7) show that (1) features for person state and interruption context are indeed
useful for classifying interruptibility; (2) in the absence of robust detectors for person state, more ro-
bust detectors for interruption context are a good substitute; and (3) Random Forest (RF) [8], Multi-
Layer Perceptron (MLP) [28], and Latent-Dynamic Conditional Random Field (LDCRF) [44] clas-
sifiers outperform all other classifiers in interruptibility classification, remaining robust to feature
noise. The results inform our development of an interruptibility-aware robot system (Section 9).

We evaluate our robot system in a 42-participant user study, introduced in Section 8 and de-
scribed in Section 10, to answer the following research questions:
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RQ3 Can we use measures of the robot’s behavior to show that our models accurately estimate
interruptibility online on a robot platform?

RQ4 How does interruptibility-aware robot behavior affect human task performance when a
robot regularly needs assistance?

RQ5 How does interruptibility-aware robot behavior affect robot task performance when relying
on humans for assistance?

RQ6 Does a robot appear more socially adept if it interrupts humans at appropriate moments?

Our results (Section 11) show that (1) our integrated system is effective at predicting interruptibil-
ity at high accuracy, (2) an interruptibility-aware robot interrupts less often but at more appropri-
ate times thereby increasing its efficiency, (3) better timed interruptions have no significant effect
on human task throughput in skill-based tasks (perhaps as a result of participants self-regulating
their schedule by ignoring badly timed interruptions), and (4) users have a higher opinion of the
interruptibility-aware robot. These results highlight key findings for face-to-face robot interrup-
tions, underscore the social and task benefits of interruptibility-aware robot behaviors, and present
directions for future research.

2 RELATED WORK

People are generally very adept at gauging the interruptibility of others from observation: when
deciding the moment to interrupt, they naturally take into account another person’s projected
level of “busyness” (demeanor) and availability, the context and conditions of the interruption,
and their knowledge of the consequences of the interruption [53]. In the following sections, we
highlight some of the pertinent prior works that detail computational methods for estimating a
person’s availability and the context for an interruption, as well as prior research into evaluating
the consequences of interruptions.

2.1 Estimating Availability and Interruption Context

Existing work has explicitly modeled a person’s availability in one of two ways. The first category
of techniques relies on task and experiential knowledge. In HCI, known task models, for instance,
detailed as Goals, Operators, Methods, Selectors (GOMS) structures [11], have been used to esti-
mate interruptibility [1, 30]. Meanwhile in robotics, cognitive architectures such as ACT-R/E [65,
66] have been used to predict if humans might need assistance in resuming a task post-interruption
by another human, a technique that easily extends to determining the moment to interrupt. How-
ever, these approaches require domain knowledge of a human’s task and constant surveillance of
its execution, which is often unavailable in a general-purpose mobile robot deployment. Others
have modeled human availability based on past experiences of room occupancy, assuming that an
open office door indicates the occupant’s willingness to be interrupted [54], but this assumption
ignores both the social cues and task state to greatly simplify the interruptibility problem.

The second category of techniques for explicitly estimating availability leverages a person’s
demeanor, focusing on immediate social cues of availability. Social cues, such as eye contact, are
largely task-independent, and as a result, models based on social cues are more easily generaliz-
able across a wider set of applications: in robotics, the methods have been used to estimate re-
lated measures of a person’s “intent-to-engage” and awareness of the robot in applications rang-
ing from companion robots [13, 42], shopping mall assistants [9, 31, 57, 59], receptionists [7], and
bartenders [21]. Some prior work has relied on external sensors such as motion capture systems,
ground-mounted LIDAR, and ceiling cameras [9, 31, 57, 59], which can be expensive and difficult to
deploy in support of mobile robots traversing a large space. Other work has used onboard sensors
to detect social cues of engagement [7, 13, 21, 42]. Although engagement estimation is a separate
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problem from interruptibility estimation (because interruptibility can be high even when engage-
ment is low), the problems are closely related, and we take inspiration from the work of Mollaret
et al. [42] and Chiang et al. [13] in both our selection of audio-visual features for classification and
in validating the use of Hidden Markov Models to estimate interruptibility.

Existing work has also implicitly modeled a person’s availability through methods termed “con-
tingency detection” [14, 22, 60]. These methods often assume the person as available, perform a
probe action (or sequence of actions), and then reassess the person’s availability based on the per-
son’s response. Assessing a person’s availability through contingency detection is complementary
to estimating availability explicitly: the latter can inform the execution of probe actions for the
former.

Meanwhile, interruption context has been extensively studied in HCI [67], where context is of-
ten captured through features that describe the user (e.g., personality traits) [62, 64], the task [1,
30], the environment [20, 64], the interruption [29], and the relationships between these when
the interruption is presented [39]. In robotics, interruption context has been studied by Nigam &
Riek [47], where the authors use only global audio-visual descriptors—such as GIST [48] features
and audio frequency & volume features—as cues to context in classifying interruptibility (termed
an appropriateness function) on their collected dataset. In our work, we instead leverage advances
in computer vision to garner localized, explicit, high-level environment context from the labels of
objects that a person might be interacting with. We also deploy our best model for online classifi-
cation in a user study for further evaluation.

2.2 Evaluating Interruption Consequences

In HCI and HFE, the cost of an interruption on-screen has been evaluated with quantitative metrics
such as time on task [1, 33, 37, 40], the number of tasks completed [40], the number of incomplete
tasks [23], the number of errors [35, 40], switching time [30, 33, 43], and workload [1, 37]; and
qualitative metrics such as respect [1] and preference [40]. In embodied settings, researchers have
also used structured interviews [24, 55, 57] and ethnographies [18, 24, 45, 55] to evaluate long-term
interruption costs.

However, the evaluation of face-to-face robot interruptions, in which a robot is co-present with
the human, has often been limited to qualitative measures to gauge the effectiveness of the inter-
ruption. For instance, Saulnier et al. [58] base their evaluations on participant self-assessed “inter-
ruptedness,” while Chiang et al. [13] evaluate whether an interruption successfully captured the
attention of a participant, without consideration for the appropriateness of interruption timing.
While the recent work of Short et al. [60], does quantitatively evaluate the effectiveness of robot in-
terruptions through a measure of the number of survey responses started by interrupted humans,
there is no prior work that quantitatively studies the task effects of embodied robot interruptions
on both the human’s and robot’s performance.

Prior research shows a strong effect of interruption handling mechanisms on the potential costs
of interruptions [24]. In HCI settings, research has shown that people subject to on-screen manda-
tory interruptions experience significant loss in task performance [1, 40, 43]. However, when such
interruptions can be deferred by the participant, as in Ref. [40], or when they do not consist of
an actual task, as in Ref. [43], the loss in task performance is not as significant; a result predicted
by the Goal-Activation model of interruption handling [2]. Similarly, in embodied settings, when
people defer an incoming interruption, they are more likely to complete their original task [23]; a
result predicted by Prospective Memory [38] models of interruption handling [24]. Recent results
from HFE continue to show that performance loss is not noticeable with tasks that are embodied
or skill-based, even when the interruptions might be computer mediated as in the work of Lee &
Duffy [35] and Kolbeinsson et al. [33]. These authors, in particular, reason that performance loss
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is absent in an embodied setting because it is impossible to occlude the main task, which allows
people to optimize common sub tasks and choose when to switch to an interruption. In this work,
we explore whether the results from HFE research generalize to robotic systems.

3 INTERRUPTIBILITY CLASSIFICATION

Interruptions are defined as “externally generated, randomly occurring, discrete events that break
the continuity of cognitive focus on a certain task” [61], and the interruptibility of a person at any
given point in time is defined in terms of their receptiveness to interruptions at that moment [62].
A person focused on their current task and not amenable to an interruption is said to have low in-
terruptibility; meanwhile, a person amenable to interruptions is said to have high interruptibility.
Hence, the interruptibility classification of any given person-of-interest can be a binary classifica-
tion task, with 0 denoting the person as busy and 1 denoting them as interruptible.

Binary interruptibility classification provides an intuitive mechanism for deciding when to in-
terrupt a person, but it is important to distinguish interruptibility from the decision to interrupt.
The interruptibility of a person quantifies the disturbance that a person might experience as a re-
sult of an interruption, while the decision to interrupt depends upon a person’s interruptibility
as well as other factors, such as the urgency and characteristics of the interrupting task [53]. In
this work, we focus on the classification of interruptibility and its use on a robot, with the goal of
incorporating the classification later within a broader framework for deciding when to interrupt.

In some applications, it can be useful to extend the binary interruptibility classes to a higher
fidelity in order to further help with the robot’s decision-making process. Such situations may
arise when the robot needs assistance from one person when multiple people, potentially in dif-
ferent states of interruptibility, are present, or if the robot should behave differently depending
on the person’s level of interruptibility. To support these capabilities, we propose the following
interruptibility scale:

INT-4 Highly Interruptible. The person is not busy, and they are aware of the robot’s pres-
ence.

INT-3 Interruptible. The person is not busy, but they are unaware of the robot’s presence.
INT-2 Not Interruptible. The person is busy, but the robot may interrupt if necessary.
INT-1 Highly Not Interruptible. The person is very busy, and the robot should not inter-

rupt.
INT-0 Interruptibility Unknown. The robot is aware that a person is present, but it does

not have sufficient sensory input to analyze interruptibility.

Values 1–4 in the scale capture the full range of interruptibility states that can help guide the
robot’s decision-making process. We include the rating of 0 to represent states in which the robot
does not yet have sufficient information about the person, such as when the person is too far away
or out of view. In this case the robot may choose to approach another person, or take actions to
improve sensing quality.

4 PERCEIVING INTERRUPTIBILITY

Interruptibility can be characterized based on two sources of information—person state and inter-

ruption context (Figure 1).
Person state is widely used to model engagement and human awareness in robotics [13, 42].

Although classifying interruptibility poses its own research problem, because interruptibility
can be high even when a person shows neither intent-to-engage or awareness of the robot, we
propose the cues of person state from the engagement modeling literature can be informative for
interruptibility. Following prior work, person state includes the following information categories:
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Fig. 1. The level of interruptibility of a person is represented on a four-point scale. In order to arrive at a

value on this scale, we use information about person state and interruption context. In this article, we use

object labels as a cue to the context.

—The position and orientation of a person within the environment. This includes where
they are located as well as how their body is oriented with respect to the robot.

—The head orientation and gaze direction of the person.
—The presence and orientation of sound within the environment.

We infer person state from laser, video, and audio sensor data.
The context of an interruption includes known information about the user, the task, the

environment, and the type of interruption [67]. Following the definition in prior work [47], we
consider interruption context to include visually observable cues from the environment that may
inform the robot of a human’s interruptibility. In particular, we use:

—The labels of objects that are being used by the person, or those that lie near them.

We infer the object labels from robot camera video and propose that the object cues to a person’s
activity can provide additional useful information for classifying interruptibility. For example, an
individual drinking from a coffee mug in a lounge is judged to be more interruptible than someone
engaged with a laptop in the same setting. Although objects may not be a valid substitute for
person state, or even activity recognition for interruptibility estimation, object recognition is
widely available on robotic systems.

In the following section, we describe how this information can be leveraged in multiple
computational models.

5 MODELS FOR INTERRUPTIBILITY CLASSIFICATION

Based on our survey of prior literature, we consider both non-temporal and temporal models for
interruptibility classification given data inputs of the form in Section 4. Non-temporal models pro-
vide interruptibility estimates based on data from a particular moment. Informed by the survey of
Turner et al. [67], which details the various classification models commonly used for interruptibil-
ity classification in HCI, we explore the use of Random Forests (RFs) [8], Support Vector Machines
(SVMs) [16], K-Nearest Neighbors (KNN) [70], and Multi-Layer Perceptrons (MLPs) [28].

In contrast, temporal models use a sequence of data within a time window to generate the
interruptibility estimates. Recent work by Foster et al. [21] on engagement modeling has shown
that although non-temporal models are more accurate at a classification task, temporal models
tend to work better on a robot due to greater stability in classification output. Informed by the
successful use of Hidden Markov Models (HMMs) for engagement detection on robots in the works
of Mollaret et al. [42] and Chiang et al. [13], we use HMMs as one of our temporal models. We
also explore Conditional Random Fields (CRFs) [34] and derivatives thereof, Hidden Conditional
Random Fields (HCRFs) [63] and Latent-Dynamic Conditional Random Fields (LDCRFs) [44], as
alternate temporal models to classify interruptibility. We expect the CRF variants to outperform
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HMMs for interruptibility classification because of their discriminative nature and more expressive
representation.

In this section, we introduce and overview the non-temporal and temporal models that we eval-
uated to classify interruptibility.

5.1 Non-Temporal Models

Here, we provide a brief overview of each non-temporal model, the hyperparameteres we used,
and the reasons to expect success with each model. Each of the models is implemented with the
scikit-learn framework [49].

Random Forests. RFs have been shown to be powerful models for activity recognition [12]. An
RF [8] models data by creating several decision trees and allowing each of them to “vote” on test
cases. Each decision tree is trained on a subset of the training data, equal to the original dataset size
and drawn randomly with replacement. We varied the number of trees in our RF and ultimately
found that 10 estimators provided the most accurate and generalizable model.

Support Vector Machines. SVMs have also been successful in many applications of super-
vised learning and classification, including activity recognition [27] and gaze estimation [15]. An
SVM [16] employs hyperplanes to attempt to partition training data into separate classes, after
casting it to a higher dimension using a kernel function. We experimented with different kernel
functions and multi-label strategies to determine that the radial basis function kernel and the one-
vs-one classification strategy worked the best for our data.

K-Nearest Neighbors. KNN [70] is a model that makes use of similarity in data points to clas-
sify unseen data. The most important parameter for KNN is the number of neighbors to examine,
which we set to five after a short experimental search. Classification of unseen data is performed
by examining the five closest data points in our training data, and returning the class label with
the most votes.

Multi-layer Perceptron. An MLP [28] is a model that trains iteratively on each example in the
dataset, using partial derivatives from a predefined loss function to update weight parameters that
are used for each prediction. While there are many parameters and architecture choices to make
for an MLP, we used a log-loss function, a Rectified Linear Unit (ReLU) [46] activation function,
and the Adam [32] optimizer. Our architecture is a 2-layer network with 100 units in each layer,
and our learning rate is set to .001. We allow training to continue until the loss stops decreasing
by more than .0001.

5.2 Temporal Models

Here, we provide an overview of each temporal model and provide motivations for its use in our
research. We explain temporal models in greater detail than non-temporal models because of their
relative rarity in robot research.

Hidden Markov Models. An HMM [50] models two stochastic processes. The first process is
a Markov chain through a sequence of discrete hidden states, while the second process produces
observable continuous or discrete emissions given a hidden state (Figure 2(a)). HMMs have found
widespread use in areas such as natural language processing and speech recognition, and, in the
context of human-robot interaction, have been used for tasks such as activity recognition and
human engagement detection [13, 42].

The HMM is characterized through five parameters

λ = (N ,M,A,B,π ),
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Fig. 2. Graphical representation of each of the temporal models in this article. Gray elements represent

observed variables, and white elements represent hidden variables.

where each of the parameters has the following significance:

N is the number of hidden states in the model. Although it is common for the hidden states to
have some physical significance, this need not be the case.

M is the number of distinct observation symbols per state if the observation sequence is dis-
crete valued. In the case of continuous observation sequences, M denotes the number of
mixture components that contribute to producing an observed value.

A is an N × N state transition matrix where each element of the matrix signifies the proba-
bility of transitioning from one hidden state to another.

B is the observation symbol probability distribution for all hidden states. In the case of discrete
emissions, B is an N ×M matrix; in the case of continuous emissions, B is a parameterized
specification of M mixtures (usually Gaussian) for each of the N hidden states.

π is the initial state distribution over the hidden states.

To classify interruptibility, we train separate ensembles of HMMs for each of the five different
interruptibility classes that we have defined. Within each ensemble, we train a separate HMM for
each of the features in the data sequences that we use. We use a uniform initial distribution over
all hidden states, and we model the continuous valued features using Gaussian Mixture Models.
The HMMs are implemented with the GHMM library1 and trained using Baum-Welch. We vary
the number of hidden states, N , from 2–4 and the number of mixtures in the models, M , from 1–4.

Given a sequence of data, each of the trained HMMs in each ensemble runs the Forward algo-
rithm to return a log likelihood of the data being generated by the HMM; the log likelihood result
for the ensemble is taken to be the sum of log likelihoods from each HMM within the ensemble.
The interruptibility label derived for the given data sequence is then determined on the basis of
the maximum log likelihood from each of the different ensembles.

Conditional Random Fields. Represented as an undirected graphical model, a CRF [34] mod-
els the probability of a label sequence conditioned on the entire observation sequence (Figure 2(b)),
as opposed to an HMM that models the joint probability of both the hidden state and the ob-
servation at any timestep. The change allows the CRF a richer specification, using prior domain
knowledge, of the relevant factors within the model by incorporating information over multiple
timesteps within the observation sequence and linking state transitions within the model directly
to the observations. Previous work has successfully demonstrated the superiority of CRFs over
HMMs in the realms of Activity Recognition [68] and Natural Language Processing [34], leading
us to hypothesize that CRFs hold promise for gauging interruptibility.

1http://ghmm.sourceforge.net/index.html.
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Concretely, the CRF model provides

P (Y |X ) =
1

Z

T∏

t=1

Ψt (Ya ,X ) Z =
∑

Ya

T∏

t=1

Ψt (Ya ,X ),

where Y = {y1,y2, . . . ,yT }, each yi ∈ Y , is the label sequence, Y is the set of possible labels, X is
the observation sequence, Z is a normalization function, and T is the length of the observation
sequence.Ya is a subset of the label sequence considered for Ψt , a local feature function dependent
on time that contains the parameters to be trained for the CRF. In our work, Y = {0, 1, 2, 3, 4},
the set of possible interruptibility labels, and we use two types of feature functions—windowed

observation feature functions and edge observation feature functions.
Windowed observation feature functions include a window parameter,ω, that defines the num-

ber of past and future observations to use when predicting a label at time t . These feature functions
are of the form:

Ψt (Ya ,X ) = exp
⎧⎪⎨
⎪
⎩

K∑

k=1

θk fk (yt ,xt−ω ,xt−ω+1, . . . ,xt+ω

⎫⎪⎬
⎪
⎭
, (1)

whereyt is the label at time t , xi is an observation value at time t = i , andK is the number of feature
functions, fk ; in our case, K is the same as the number of attributes in the data. The parameter θk

is a parameter that is trained using gradient descent.
Unlike windowed observation feature functions, edge observation feature functions model tran-

sitions from one interruptibility class to another. These feature functions have the form:

Ψt (Ya ,X ) = exp
⎧⎪⎨
⎪
⎩

K∑

k=1

θk fk (yt−1,yt )
⎫⎪⎬
⎪
⎭
, (2)

where all the variables have the same meaning as they did in Equation (1), and the value of K is
the number of possible transitions, 25, from one interruptibility class to another.

In our work, the feature functions are specified using the implementation of CRFs in the HCRF
library,2 and we train the parameters θk using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
gradient descent method. Unlike with the HMMs, we do not train separate CRFs for each of the
interruptibility classes; instead, we train the CRF to perform multiclass classification. We vary the
value of the hyperparameter ω from 0–4.

Hidden Conditional Random Fields. The HCRF [63] extends the CRF by including hidden
state variables to more accurately model intra-class variation within observation data. In addition,
the HCRF provides a single label for the entire sequence (Figure 2(c)) and, thus, prevents the need
for an a priori segmentation of the observed sequence into substructures. Prior work has success-
fully used the HCRF for Gesture Recognition [63], and, thus, we consider it a good candidate for
modeling interruptibility.

Mathematically, the HCRF is formulated in a similar manner to the CRF:

P (y |X ) =
∑

H

P (y,H |X ) =
1

Z

∑

H

T∏

t=1

Ψt (y,H ,X ) Z =
∑

y

∑

H

T∏

t=1

Ψt (y,H ,X ),

whereH = {h1,h2, . . . ,hT }, eachhi ∈ H is a sequence of hidden states that capture the underlying
structure of classy, andH is the set of possible hidden states. Correspondingly, |H | is the number
of hidden states that the HCRF can use; this hyperparameter is optimized during training.

2https://sourceforge.net/projects/hcrf/.
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In our work, the feature functions in Equations (1) and (2) are modified so that yt and yt−1 are
replaced with ht and ht−1, where ht and ht−1 are the hidden states at time t and t − 1, respectively.
We also create an additional feature function to model the association of a hidden state to the
interruptibility class label for a sequence. This feature function is of the form:

Ψt (y,H ,X ) = exp
⎧⎪⎨
⎪
⎩

K∑

k=1

θk fk (y,ht )
⎫⎪⎬
⎪
⎭
, (3)

where all the variables have the same meaning as they did in Equation (1). The value of K equals
|H | × |Y|, which is the number of hidden states per interruptibility class.

The feature functions are implemented using the HCRF library2 and training is performed using
BFGS. As with the CRF, we train the HCRF to perform multiclass classification and vary the value
of the hyperparameters ω from 0–4 and |H | from 2–4.

Latent-Dynamic Conditional Random Fields. The LDCRF [44] offers several advantages
over CRFs and HCRFs by modeling both extrinsic dynamics between interruptibility classes as
well as the intrinsic substructure within an interruptibility class. It does so by using hidden states,
as the HCRF, and at the same time by removing the need to label an entire sequence with a single
interruptibility class label (Figure 2(d)). In prior work, the LDCRF has been shown to outperform
both the CRF and HCRF in Gesture Recognition [44], and, therefore, we consider it a good candidate
for classifying interruptibility.

Mathematically, the LDCRF assumes that each sequence labely contains a corresponding setHy

of hidden states to capture intra-class substructures. Therefore, the LDCRF evaluates the following
conditional model

P (Y |X ) =
∑

H

P (Y |H ,X )P (H |X ),

whereH = {h1,h2, . . . ,hT } is a sequence of hidden states and eachhi belongs to the hidden state set
Hyi

of its corresponding labelyi . To keep training and inference tractable, these sets are assumed to
be disjoint for each class label. With the disjoint assumption, the conditional probability evaluated
by the LDCRF reduces to

P (Y |X ) =
∑

H :{h1, ...,hT },hi ∈Hyi

P (H |X ),

where P (H |X ) can be derived using the CRF formulation:

P (H |X ) =
1

Z

T∏

t=1

Ψt (Ha ,X ) Z =
∑

Ha

T∏

t=1

Ψt (Ha ,X )

In our work, we use the same feature functions that we have for the CRF (Equations (1) and
(2) ), with suitable updates to the variables. The feature functions are again implemented using
the HCRF library2 and training is performed with BFGS. As with the HCRF and CRF, the LDCRF
is trained to perform multiclass classification. We vary the value of the hyperparameters ω from
0–4 and |H | from 2–4.

6 DATASET FOR INTERRUPTIBILITY CLASSIFICATION

In this section, we describe a dataset that we collected to evaluate the models introduced in Sec-
tion 5 on their accuracy and robustness in interruptibility classification. Specifically, we seek to
answer:

2https://sourceforge.net/projects/hcrf/.
2https://sourceforge.net/projects/hcrf/.
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Table 1. Membership of Each Person State Feature to the

Different Feature Sets—Minimal (Min), Standard (Std),

and Extended (Ext)

Feature Min Std Ext

Body Position × × ×
Face Gaze × × ×
Body Orientation∗ × ×
Audio Angle × ×
Audio Confidence × ×
Audio Angle Near Position∗ ×
Within Camera Field-of-View ×
Body Distance Thresholds ×
Linear Velocity ×
Quaternion Rate of Change∗ ×
Face Bounding Box∗ ×
Body Bounding Box∗ ×
Body Bounding Box Area∗ ×
∗These Features Provided Unreliable Data Either due to Sensor

Noise or Sensor Unreliability.

RQ1 Which computational features are useful in allowing a robot to classify interruptibility in
an unstructured world?

RQ2 What is a robust model for obtaining interruptibility estimates from the proposed features?

Therefore, our dataset contains different subsets of the information categories presented in Sec-
tion 4, each of which contains varying levels of information and noise.

6.1 Feature Subsets

Each of the sets of features in the dataset is additive in the features it is comprised of. Ultimately, the
sets increase the amount of information presented to our models but at the cost of a corresponding
increase in noise in those features.

Person State Features. We define the primary interruptibility cues about a person include
head orientation, body position, and audible signals (Section 4). Since the recognition of some of
these cues by a mobile robot in a public space can be noisy, we consider three subsets of features—
Minimal (Min), Standard (Std), and Extended (Ext)—which are summarized in Table 1. Our goal in
this part of our work is to explore the robustness of the classification models to additional data
and noise; we do not propose that any of the subsets is the best set of features for characterizing
person state in general.

Minimal Feature Set. We speculate that the most informative features for gauging interruptibility
are the position of a person and an indication of whether they are looking at the robot or not.
Therefore, we use Min to test our model performance when rich, but possibly noisy, data from other
sensors (such as microphones), or from additional visual detectors (such as upper body detectors),
is unavailable. This set contains:

Body Position: Tuple, (x ,y), denoting the position of the body in the environment relative to
the robot base.
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Face Gaze: Boolean, True when a face is detected and the head is oriented toward the robot,
False when a face is detected but the head is not oriented toward the robot or
if the eyes are shut, and NaN when no face is detected.

Standard Feature Set. This set of features represents the full breadth of information enumerated
in Section 4 and is most similar to the features used in Refs [13, 42]. In addition to Min, the set
contains:

Body Orientation: Tuple, (z,w ), of the quaternion, (x ,y, z,w ), denoting the rotation of a per-
son’s upper body relative to the robot’s base frame. The (z,w ) values spec-
ify rotation estimates about the upright axis and are, thus, the only mean-
ingful values in the quaternion.

Audio Angle: Angle, in radians, to the dominant source of detected sound, calculated by
a Kinect.

Audio Confidence: A [0, 1] confidence measure for the Audio Angle estimate.

Extended Features Set. In the final feature set, we add additional features, some of which are noisy,
to study the effects of extra data on model performance. The features are either obtained from the
outputs of intermediate processing steps, such as the body bounding box, which is a supplementary
output of the upper body detector, or are obtained through additional post-processing of Std, such
as the field-of-view Boolean, which maps a point in (x ,y) to a Boolean value indicating whether
the point is in the field-of-view of the camera. These features have not been used in prior works
but are added with the aim of making explicit some of the decision variables that we think might
be useful for interruptibility. We surmise that the presence of the explicit decision variables will
help the models, regardless of the effects of the noise. The variables include:

Audio Angle Near Position: Boolean, True when the Audio Angle estimate equals the angle
from the camera to a detected person (within some tolerance),
False when this is not the case.

Within Camera Field-of-View: Boolean, True when a detected person is within the field-of-
view of the camera and False otherwise.

Body Distance Thresholds: Three Booleans, each True if a detected person is beyond
the boundaries of Hall’s proxemic distances [25], and False if
not. The boundaries considered are those of Personal Distance
(0.46 m), Social Distance (1.22 m), and Public Distance (3.66 m).

Linear Velocity: Tuple, (vx ,vy ), obtained from the rate of change in Body Posi-

tion between data segments.
Quaternion Rate of Change: Tuple, (vz ,vw ), obtained from the rate of change in Body Ori-

entation between data segments.
Face Bounding Box: Four continuous values—x, y, width, and height—for the bound-

ing box around a detected face.
Body Bounding Box: Four continuous values—x, y, width, and height—for the bound-

ing box around a detected body.
Body Bounding Box Area: Area of the Body Bounding Box.

In all models but the HMM, continuous multivariate features, such as the Body Position tuple, are
treated as separate vectors of univariate features. In the HMM, the features are left as multivariate,
because doing so provides us with the largest log likelihood values post-training. Similarly, com-
bining the Within Camera Field-of-View Boolean feature with the Body Distance Thresholds Boolean
features, and combining the Audio Angle feature with the Audio Angle Confidence feature, provides
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Fig. 3. Example scenes from the five data collection runs in the dataset in Section 6.2. The blue bounding

box denotes individuals identified in the scene and the green bounding box denotes a face identified by the

face recognition component. The interruptibility label of the identified individuals is also shown.

us with the highest log likelihood values for the HMM, and, therefore, these combinations are used
in that model.

Interruption Context Feature. In order to evaluate the use of object recognition as a means
of conveying the context of a scene, we additionally define an object label feature, which can be
added to any of the above feature sets. The object feature is defined as a set of Boolean values,
each of which is True or False if the corresponding object is present or absent within the scene.
Objects are human-annotated (Section 6.2), and as such, we have perfect object labels. Therefore,
we simulate the noise expected from automated object recognition by randomly corrupting the
Boolean values in approximately 10% of the data segments of each interruptibility class label.

6.2 Dataset Creation

Our dataset contains robot sensor data from scenes containing small groups of people acting out
staged scenarios in a public space (Figure 3).

Robot Sensors and Software. The robot used to collect the dataset was outfitted with a
Hokuyo laser scanner, a Kinect One RGB-D camera, and an ASUS Xtion Pro Live RGB-D camera.
The Kinect directional microphone array was used to collect audio data. We used the STRANDS
perception pipeline [17] for people tracking at approximately 10Hz and the Sighthound Cloud
API3 for face detection and tagging at 3–4Hz.

Data Collection and Processing. During the data collection process, five people (not co-
authors on the article) were asked to take part in everyday activities in a common area of the
building. Five data collection runs were conducted, each with 3–5 participants in the scene en-
gaged in activities such as drinking coffee, having a conversation, or working on their laptops
(Figure 3). The common area and activities were chosen because they allowed for a wide range of
likely activities and a variety of visual scenes with different numbers of people and varying levels
of occlusion. During each run, the robot was teleoperated through a preset series of waypoints
that enabled it to observe the group from different perspectives; each run lasted an average of 108
seconds.

Following recording, the data was processed into segments that could be annotated with a per-
son’s interruptibility. Due to motion blur during navigation, only data from stationary robot obser-
vations was used. First, data from all sensor streams was segmented into 250ms non-overlapping
windows. For each sensor stream, the window of data was condensed into a single value consisting
of the last recorded value for that sensor stream (if available). A Euclidean distance heuristic was
then used to merge data for each detected person across all sensor streams. The result of this pro-
cess was the creation of 1,516 data segments, each of duration 250ms, and each of which contained
all the information, represented as features, available about a single person detected within the

3https://www.sighthound.com/products/cloud.
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environment. Each segment was then annotated with ground truth interruptibility labels (details
below).

Post-annotation, consecutive data segments were concatenated into sequences of minimum
length 4 (1 second) and maximum length 8 (2 seconds), which resulted in the creation of 671 se-
quences. In the event of missing data (e.g., face recognition failure), missing values were filled
in through linear interpolation for continuous valued features, or by propagating the last known
value for Boolean valued features. If neither approach was available, such as in the case where the
beginning segment of the sequence was missing required data, features were assigned a value of
NaN to distinguish them from other valid values in the domain. During training and evaluation,
the non-temporal models used the empirically determined value of −5 instead of NaN ; the tempo-
ral models were modified to ignore NaN values. Additionally, during evaluation, and for training
HCRFs, we defined the interruptibility label of a sequence to be the interruptibility label of the last
segment in the sequence.4 Non-temporal models were trained and evaluated on the data and label
of the last segment in the sequence.

Annotation. One of the coauthors of this article used the extended 5-point interruptibility scale
from Section 3 to annotate each of the 250ms data segments. Additionally, two independent coders
were each asked to annotate a random subset consisting of approximately 40% of the data. To verify
label consistency we calculated the Cronbach’s Alpha measure of inter-rater reliability between
our annotations and those of the other annotators, resulting in scores of 0.81 and 0.96. The high
level of agreement highlights not only label reliability, but also the fact that humans are generally
very consistent in judging the interruptibility of others.

We also annotated the data in this dataset with the labels of objects in the scene. The labels
included unknown, none, laptop, bottle, book, headphones, mug, phone_talk, and phone_text. The la-
bel unknown was frequently used in conjunction with the interruptibility label 0, which was used
in situations when the person-of-interest was outside the camera field-of-view but detected by
the laser and audio (leftmost example in Figure 3). Separate labels were assigned to phone use
for speaking or texting (phone_talk and phone_text) because the activities correspond to differ-
ent visual features and because the associated interruptibility of the person would likely also be
different.

7 EVALUATING FEATURES AND MODEL ROBUSTNESS

In this section, we present a comparison of the classification models in the estimation of interrupt-
ibility based on the different feature sets introduced in Section 6.1, and then show the impact of
adding contextual data in the form of object labels. In order to train the parameters for our mod-
els, we performed 10-fold cross-validation with 80% of the data in a fold used for training and 20%
for testing. Results with the best performing hyperparameters for each model are reported using
a Matthew’s Correlation Coefficient (MCC) score for multiclass classification. The score, with a
maximum value of 1.0 and with 0.0 indicating a performance no better than random, reflects a
model’s predictive power in a classification task in the presence of unbalanced class labels. Sig-
nificance results are presented using a Wilcoxon rank-sum test using the MCC scores across the
different folds of cross-validation.

7.1 Robustness to Noise

Figure 4 compares the performance of the classification models across the three feature sets with-
out the inclusion of object context data. The results for each of the feature sets is analyzed below.

4No significant difference was observed in using alternate sequence labeling methods, such as mode of all segment labels.
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Fig. 4. Average MCC (MCCavд ) performance of each model in 10-fold cross-validation as a function of the

feature sets. In Figures 4, 5, 6, and 7, error bars indicate the 95% confidence interval and asterisks indicate

the level of statistical significance after the Wilcoxon rank-sum test on MCC scores in each fold of cross-

validation: *p < 0.05, **p < 0.01, ***p < 0.001.

Fig. 5. The classifiers ordered in increasing order of MCCavд (Figure 4) for each of the feature sets.

Minimal Feature Set. Figure 5(a) orders the eight classifiers in order of improving performance on
the classification of interruptibility using the Min feature set. We note that the RF classifier is the
overall best performing classifier with an MCCavд of 0.94, and the LDCRF is the best performing
temporal classifier with anMCCavд of 0.89. The KNN classifier performs on par (ΔMCC = 0.01,p =
.8) with the LDCRF classifier, achieving an MCCavд of 0.90. The HMM’s performance, with an
MCCavд of 0.84, is also not significantly different than that of the LDCRF (ΔMCC = −0.05,p = .38),
but the high variance in its classification accuracy also does not differentiate it from the MLP
(ΔMCC = −0.01,p = .68), which achieves an MCCavд of 0.83. Meanwhile, the MLP is noticeably
less accurate than the LDCRF (ΔMCC = −0.06,p = .023) and significantly more accurate than the
HCRF (ΔMCC = 0.09,p = .0039), which has an MCCavд of 0.74. Finally, while the HCRF is not
significantly better than the SVM (ΔMCC = 0.05,p = .11), which achieves an MCCavд of 0.69, the
HCRF is significantly better than the CRF (ΔMCC = 0.08,p = .0029), which achieves an MCCavд

of 0.66.

Standard Feature Set. Figure 5(b) orders the eight classifiers in order of improving performance
when using Std, which includes three additional features beyond the minimal set (Body Orientation,
Audio Angle, and Audio Confidence). We observe that the RF classifier remains the best performing
classifier for interruptibility classification, with an MCCavд of 0.92. Similarly, despite a noticeable
drop (ΔMCC = −0.05,p = .023) in the performance of the LDCRF to an MCCavд of 0.84, it contin-
ues to be the best performing temporal classifier. The drop in LDCRF performance, coupled with an
insignificant change (ΔMCC = 0.02,p = .17) in the performance of the MLP, puts the performance
of the LDCRF on par with that of the MLP (ΔMCC = 0.02,p = .22), which achieves an MCCavд of
0.86.

Overall, we notice that the use of the Std features either leaves the performance of the models
unchanged, or causes a significant drop in classification accuracy. This drop is particularly evident
in the case of the KNN (ΔMCC = −0.16,p < .001) and the HMM (ΔMCC = −0.19,p = .014). Al-
though the Curse of Dimensionality [6] is a likely contributor to the observed penalty in the case
of the KNN, the noise in the features of Std also plays a non-trivial role in the observed results.
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Fig. 6. Effect of adding object labels as features to the different feature sets.

The Body Orientation feature, for example, is extremely noisy, with orientation values in some seg-
ments deviating by 90◦ or more from the ground truth. Most of the models show some sensitivity
to this noise, with the HMM and KNN proving to be particularly susceptible. Although there is an
insignificant change (ΔMCC = −0.05,p = .74) in the performance of the HCRF, with an MCCavд

of 0.69, the increased variance in model’s performance and the lower average score indicate that
the HCRF might also be particularly susceptible to noise in its features.

Extended Feature Set. Figure 5(c) presents the classification models ordered on performance with
Ext, which includes eight features beyond Std. Several of these features contain additional infor-
mation, such as the Body Distance Threshold Booleans and the Linear Velocity tuple, but signifi-
cant noise (see Table 1). Overall, the trends we observe in performance with Std hold with Ext.
RF remains the best performing classifier with an MCCavд of 0.94, outperforming the LDCRF
(ΔMCC = 0.03,p = .0021), which remains the best performing temporal classifier with anMCCavд

of 0.91. The MLP continues to perform on par (ΔMCC = −0.02,p = .32) with the LDCRF, with an
MCCavд of 0.89, thereby preserving the ordering of the models observed with Std.

The performance on Ext reveals the HCRF and HMM sensitive to noise, with significant drops in
the performance of both models relative to their performance with Min (ΔMCC = −0.17,p = .029
for the HCRF, and ΔMCC = −0.26,p = .01 for the HMM). Meanwhile, the remaining models reveal
themselves to be tolerant to noise, with the CRF (ΔMCC = 0.16,p < .001) and SVM (ΔMCC =
0.11,p < .001) in particular showing significant improvement in their MCCavд scores with the
addition of more information with Ext.

Summary. In summary, we first note that, as a partial answer to the question of what features
might be relevant to the classification of interruptibility (RQ1), the hypothesized person state fea-
tures mentioned in Section 4 are relevant because our models achieve high MCC scores with all
subsets of those features—Min, Std, and Ext. Next, to answer the question of finding a robust model
for interruptibility classification (RQ2), we find that the RF model consistently outperforms all
other models across all feature sets, remaining robust to noise in features but also remaining un-
affected by any additional information in them. In contrast, the MLP and LDCRF perform com-
parably to RF, especially with Ext features, and both show an ability to learn from the additional
information available in the features while also remaining robust to noise.

In the following subsection, we complete our investigation into the features relevant for in-
terruptibility classification by examining the performance of the RF, MLP, and LDCRF with
the addition of object label features, which provide information about the interruption context
(Section 4).

7.2 Adding Object Context

Figure 6 presents the classification performance of the RF, LDCRF, and MLP classifiers after adding
object recognition features to each of the three feature sets (Min, Std, and Ext). Overall, we note that
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Fig. 7. Comparison of RF, LDCRF, and MLP performance with Ext features to their performance with Min

and Ext features augmented with object labels.

the addition either improves classification performance or leaves it unchanged, thereby implying
that object labels are a good cue to interruptibility. In the case of RF, we find that the object labels do
not affect classification performance, which is similar to the trend observed in the Figure 4 where
the inclusion of additional features from Min to Ext does not affect the classification performance
of the RF model. Conversely, the LDCRF experiences consistent gains in classification performance
from the addition of object label features to Min (ΔMCC = 0.06,p < .001), Std (ΔMCC = 0.08,p <
.001), and Ext (ΔMCC = 0.03,p = .0021). The MLP also experiences a significant improvement in
classification performance with the addition of object labels to Min (ΔMCC = 0.10,p < .001), Std

(ΔMCC = 0.07,p < .001), and Ext (ΔMCC = 0.03,p = .043).
In fact, as shown in Figure 7, we find that in lieu of adding a large set of somewhat noisy features

to Min (as we do with Ext), adding the more precise object label features (Min+Obj) leads to better
classification of interruptibility, particularly for the LDCRF (ΔMCC = 0.04,p < .001) and the MLP
(ΔMCC = 0.04,p = .043). Additionally, we find that the object labels provide sufficient information
for interruptibility estimation, with no significant improvement in interruptibility classification
performance between Min+Obj and Ext+Obj for any of the three models, RF (ΔMCC = 0.01,p =
.44), LDCRF (ΔMCC = −0.01,p = .32), and MLP (ΔMCC = −0.01,p = .97).

Therefore, to complete an answer to the question of what features might be relevant to the
classification of interruptibility (RQ1), we can state that features about the interruption context,
such as object labels, are also relevant.

7.3 Conclusions

In this section, we answer our first two research questions and find that:

(1) As proposed in Section 4, we can use both person state features, and cues of the interruption

context, such as object labels, to classify interruptibility in an unstructured world.
(2) In the absence of robust detection of social cues (for example, noisy upper body detection),

robust context detection (for example, accurate object detection) can be a good substitute.
(3) The RF, LDCRF, and MLP classifiers are good candidates for robust interruptibility classi-

fication from the proposed features.

The second finding is especially significant in robot application domains where it might be difficult
to obtain reliable person tracking information, but easier to obtain contextual signals in the form
of object detection.

To answer our remaining research questions and to fully evaluate our findings from this section,
we followed the above evaluation with a user study in which we deployed a model for online
interruptibility classification on a robot. The following sections introduce the user study, elaborate
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Fig. 8. The robot interrupts a participant engaged in a building task.

on the system we designed for online interruptibility classification, and then present results from
using the system in the user study.

8 EFFECTS OF INTERRUPTIBILITY CLASSIFICATION: USER STUDY

Our research seeks to develop interruptibility-awareness in robots and to evaluate the effects of this
capability on human task performance, robot task performance, and on the human’s interpretation
of the robot’s social aptitude. Therefore, we also focus on the following research questions:

RQ3 Can we use measures of the robot’s behavior to show that our models accurately estimate
interruptibility online on a robot platform?

RQ4 How does interruptibility-aware robot behavior affect human task performance when a
robot regularly needs assistance?

RQ5 How does interruptibility-aware robot behavior affect robot task performance when relying
on humans for assistance?

RQ6 Does a robot appear more socially adept if it interrupts humans at appropriate moments?

In order to evaluate these questions, we conducted a between-subjects user study in which
human participants took part in a mock manufacturing assembly activity. Participants were given
construction tasks while a robot with tasks of its own would occasionally interrupt them to request
assistance (Figure 8). The study had three conditions in which we varied the mechanism used by
the robot to select an appropriate moment to interrupt the participant.

Random Interruptions (RND). The robot interrupted participants after it waited for a random
amount of time, reflecting the current behavior of interruptibility-unaware robots. For example,
the robots evaluated by Mutlu and Forlizzi [45] operated in the same environment as hospital staff,
interrupting them randomly to gain attention as needs arose. In our study, the robot’s algorithm
tried to emulate this behavior by randomly selecting a wait time from a uniform distribution in
the range [0,30] sec; after which, it flipped a fair coin every 0.5 sec to decide whether to interrupt.
Wait times in the study ranged from 2 to 37 sec.
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Fig. 9. Examples of both (a) the interruptibility pipeline and (b) the features that are detected by our classifier.

Wizard-of-Oz Interruptions (WOZ). The robot interrupted participants when a human (wizard)
signaled it was an appropriate time. Wizards were provided with a real-time video feed from the
robot’s camera and, during pilot trials, were instructed to make moment-by-moment decisions
to interrupt the participant or not, simulating the decision made by our interruptibility models.5

Once the decision to interrupt was made, the wizards could perform no more actions until the
next robot incursion into the study space. During study trials, there was no interaction between
the experimenters and the wizard. We recruited two wizards and observed that, despite similar
instructions, differing social norms and attitudes among individuals led one wizard to be more
conservative in their interruptions than the other. We, therefore, had each wizard participate in
50% of WOZ trials to help account for this effect.

Model-based Interruptions (MDL). The robot interrupted participants based on output from an
LDCRF classifier implemented within a system to perform online interruptibility classification. We
chose the LDCRF over the RF and MLP due to our evaluations in Section 9.2.

In the following sections, we first describe our computational framework to enable online in-
terruptibility classification and our process for choosing the appropriate classification model. We
then present the design of and results from the user study to answer the above research questions.

9 COMPUTATIONAL FRAMEWORK

Our computational framework consists of two principal components: the perception system that
identifies people in a scene and extracts feature vectors characterizing their state, and the clas-
sification model that classifies the interruptibility state of each person in the scene. Figure 9(a)
summarizes the computation pipeline, which runs on our mobile robot equipped with a Microsoft
Kinect RGB-D camera.

9.1 Perception System

The perception system of the robot (1) detects people in the scene, (2) uses a series of detectors
to analyze the state of each individual, and (3) merges the output of the detectors into a feature
vector for processing by the classification model. The feature vector, its features enumerated in
Table 2, is emitted by the perception system at about 2.5Hz.

Person Detector: We use the You Only Look Once (YOLOv2) [51] deep neural network to detect
people in the scene. This detector was chosen for ease of use and setup, and for its accuracy and
speed. It never missed a person in our user study, and published at >10fps.

5The wizards were asked to (1) treat images from the video at each moment as a static image to decide whether they would

interrupt the participant at that moment, (2) specifically ignore the screen on the participant’s tablet and the task schedules

that they were becoming accustomed to (to the extent possible), and (3) give the robot and human tasks equal importance.
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Table 2. The Features Emitted from the Perception System to Classify

the Interruptibility of Observed People

Features Detector(s)

Face Gaze Estimate: at_robot |left_riдht |down Face
Skeletal Angles & Vectors:
anдle_left|riдht_elbow , anдle_left|riдht_wrist ,
anдle_left|riдht_shoulder , anдle_left|riдht_eye ,
nose_vec_x |y

Pose

Object Counts: book , bottle , bowl , cup, laptop,
cellphone , tablet

Objects

Feature Detectors: Once a person has been identified in the scene, we employ several deep net-
works to extract interruptibility-relevant features about the person. We include features from the
prior work, such as the coarse gaze estimate of a person and the objects associated with them, and
introduce the skeletal data for improved classification.

Face Detector: We use a cascaded deep network [69] for face detection and coarse gaze estima-
tion. The detector returns facial keypoints, which we translate into an enumerated gaze estimation
variable. Features: at_robot|left_right|down (Enum). Framerate: 7-10fps.

Object Detector 1: We use another implementation of YOLOv2 that runs over higher resolution
images that are cropped to include regions around people in the scene—information that is ob-
tained from our person detector. This detector was trained on the Microsoft Common Objects in
Context (MSCOCO) dataset [36] and returns counts of objects and their positions. Features: book,
bottle, bowl, cup, laptop, and cell phone. Framerate: >10 fps.

Object Detector 2: We use Faster R-CNN [52], fine-tuned to identify study-related objects on the
table; in our case, the tablet that participants used throughout the study. As with our other object
detector, this returns counts and positions of detected objects. Features: tablet. Framerate: >10 fps.

Pose Detector: We use a convolutional pose machine (CPM) [10] to infer a person’s skeletal
keypoints. These keypoints are then refined into joint angles and vectors for our classifier. Features:
nose_vec_x|y, angle_left|right: elbow, wrist, shoulder, eye. Framerate: 5–7 fps.

Feature Fusion: Each of the above detectors runs in parallel and at different rates. The Feature
Fusion module uses the Euclidean distance heuristics mentioned in Section 6.2 to aggregate the
output of the various detectors into a single feature vector describing the most up-to-date estimate
of the scene. Concretely, the module polls the person detector at a rate of 2.5Hz to track every
person identified by the detector. It then uses its heuristics to associate the latest data from the
other detectors to its database of tracked people. If a detector does not contain information about
the person of interest, the fusion module inserts a placeholder value of NaN for the corresponding
attribute in the feature vector described in Table 2.

9.2 Classification Model

The classification model outputs the interruptibility of a person of interest given a stored buffer of
feature vectors from the Perception System.6 Based on our evaluations in Section 7, we considered

6During our user study, we stored a buffer containing 4 secs of feature vectors and used the buffer for data imputation, as

described in Section 6.2.
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Fig. 10. Example timeline of a trial with the tablet ground truth, the human annotations, and the model

predictions. Orange shows uninterruptible (0) while blue shows interruptible (1); gray indicates that there

was insufficient data for the model to make a classification. Black indicates breakpoints between different

moments of observation by the robot during the course of the trial.

the RF, LDCRF, and MLP classifiers when building our computational framework; further eval-
uations, which we summarize below, led us to choose the LDCRF over the other two classifiers.
In this section, we introduce both the dataset we used to evaluate the different models and the
evaluation we performed to select the final model for our study.

Dataset: We evaluated the models on data collected over the course of 4 pilot runs and 11 runs
of the RND condition of the study introduced in Section 8. Two of the coauthors annotated the
collected data on a binary scale of interruptibility,7 with 0 as uninterruptible and 1 as interruptible.8

Cronbach’s Alpha score of inter-rater reliability was 0.97 between the co-authors. The models were
trained on one of these two annotations.

In addition to human annotations of interruptibility, we obtained ground truth interruptibility
labels of participants from the tablets provided to them in the study (Section 10), where the ground
truth label for a participant was 0 if they were provided a build assignment on their tablet, and 1
otherwise. The Cronbach’s Alpha score was 0.95 for each of the annotators with the ground truth
labels.9 We trained and tested our models on the human annotated labels because the ground truth
labels did not always correlate to the social cues of interruptibility projected by the participant.

Method: Similar to the process described in Section 7, we tested all hyperparameter configu-
rations of the models with five-fold cross-validation, with special care undertaken to ensure that
none of the data from any of the study trials was shared between the train and test sets. We eval-
uated the models on two metrics: the first, an MCC score to gauge classification accuracy, and the
second, a measure of the fluctuation rate in model prediction, FR, similar to the one used by Foster
et al. [21]. Our measure of fluctuation is calculated as follows:

f luctuation_rate (FR) =
num_prediction_chanдes

total_num_predictions

Values for FR vary from 0–1, with ideal values as close to the FR of human labels as possible, which
in turn is almost always 0.

Result: Figure 11 presents the performance of the three models across the data in the 15 trials on
the metrics of the MCC score and fluctuation rate, FR. A Kruskal-Wallis test indicates that there is
no significant difference between the models on the metric of MCC score (H (2,N = 45) = 0.63,p =
.73) or on the metric of FR (H (2,N = 45) = 4.0,p = .13).

7As mentioned in Section 3, a binary scale of interruptibility is most intuitive, with the extended interruptibility classifica-

tion scale being of use in situations involving multiple, potentially occluded, people. In our study, such conditions do not

arise, allowing us to use the more intuitive binary scale.
8The annotators operated under the instructions provided to the wizards in the WOZ condition: they observed a video feed

from the robot’s camera and provided a moment-by-moment label of whether the participant was interruptible.
9The ground truth rating sometimes differed from the human annotation if the participant chose to ignore the tablet build

or if they appeared busy in another task despite the tablet marking them as available.
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Fig. 11. Model Performance.

Due to the lack of significant signal from the evaluation metrics to aid us in choosing a model, we
conducted additional tests on the robot using all three models. Empirically, we found that despite
favorable MCC scores, the MLP and RF classifiers performed poorly in practice, often oscillating
between interruptibility classes with miniscule changes to the scene. The RF classifier was particu-
larly prone to this problem, often varying its classification output within a seemingly static scene.
Our experiences corroborate those of Foster et al. [21], where the authors deemed their tempo-
ral CRF classifier more appropriate for use on their robot due to greater stability in classification
output, despite inferior classification accuracy to other non-temporal models. We note that the
discrepancy is ill-studied and scope for further research.

In conclusion, based on our evaluations, we used the LDCRF as our classifier of choice for the
study trials in the MDL of our user study. The following section introduces the full design of the
study.

10 USER STUDY: DESIGN

We conducted a between-subjects user study to evaluate the research questions outlined in Sec-
tion 8. The study involved 48 trial participants.10 Six trials were excluded from the study analysis:
two due to hardware malfunction, and four due to participants deviating from the study protocol.
The resulting 42 participants (20 women, 22 men) were aged between 21 and 29 (Mdn = 24). The
study took approximately 50 min, and participants were paid $10 USD.

10.1 Study Procedure

We devised a skill-based experimental task in which human participants took part in a mock man-
ufacturing assembly activity. Participants were instructed to construct structures (builds) out of
wooden pieces (Figure 12(b)), and told that their build process would be video recorded to be used
later as training data for the robot. Additionally, participants were told that the robot was per-
forming and studying its own builds, and that it would occasionally enter the space to request
assistance.

Pre-Study: Upon arrival, participants were briefed on the study, completed consent forms,
and filled in a pre-study questionnaire. Nearby, to support the narrative of the robot learning

10Six additional participants took part in pilot trials used to tune build complexity, robot behavior, train the classification

models, and to familiarize the wizards with their interface.
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Fig. 12. Figures to aid in interpretability of the study design, including (a) a map of the space, (b) some

sample builds, and (c) a typical trial timeline.

to construct builds, an experimenter could be seen “training”11 the robot by responding to the
robot’s questions (e.g., “Is this a correct build?”).

Study Space: After the study briefing, participants entered the building area (Figure 12(a)), con-
sisting of an enclosed space with fetch area for retrieving build components, a work area for con-
struction, and a dropoff area for completed builds. A key element of the study design is that the
study schedule was split into periods of work and leisure to ensure that participants had periods of
low and high interruptibility. To induce participants to showcase a diverse range of natural leisure
behaviors (to fully evaluate the performance of the classifier and generalizability of our system),
the room included a TV playing muted videos,12 a stack of books, and a couch. Participants were
also allowed to keep their cell phones. Overall, during breaks, 64% sat on the couch, 50% used their
cell phones, 40% drank a refreshment, and 14% read a book.

For the remainder of the study period, participants alternated between constructing builds
(build) and break times (idle), while being occasionally interrupted by the robot. Figure 12(c)
presents an example timeline.

Builds: Each participant trial consisted of three build sessions. The first build session was a
training session during which participants were allowed to ask questions and acclimate themselves
to the task and the robot. We do not report data from this session. Sessions 2 and 3 each consisted
of two builds, with a short break in between. Instructions for each build were provided on a tablet
located on the work table; the tablet remained blank until the designated build time, and presented
a NASA-TLX [26] workload questionnaire each time the participant selected that they had com-
pleted a build. The build sessions were either 15 min or 9 min in length, and were presented to all
participants in a counterbalanced manner. The different length build sessions were configured to
provide differing degrees of time pressure on the participant. In addition, pilot studies showed that
some participants improved in build performance due to learning; the counterbalanced sessions

11No actual training of the robot occurred during the study trials.
12http://bit.ly/2xR65aG.
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were used to amortize the effects of learning on high time pressure and low time pressure sessions.
All builds in a build session had a time limit, and participants were shown a countdown timer 30
sec before the end of this time limit; participants were not allowed to work past the end of the limit.

Breaks: Each trial included two break times approximately 6 min in length (differences in
duration occurring due to robot interruptions), during which the tablet was taken away and the
participants were invited to rest on the couch. The purpose of the break was to expose the robot
to interruptible human behavior. In both cases, the experimenters presented fictitious excuses
to the participant for pausing the study, in one case claiming a non-existent tracking device
required adjustment, and in the other case simulating a tablet malfunction. For both breaks,
experimenters explained the pause in the experiment, invited participants to wait on the couch,
and then returned at the end of the break to “continue” the study. Participants were told that the
robot interruptions would continue since the robot remained unaffected by the glitch.

Robot Interruptions: The robot continually entered the building area looking for assistance
from the start to the end of a trial. The schedule of these entrances was not predefined and the
robot was sent back in as soon as it returned from an interruption. The first three robot entrances
coincided with the training build session and part of the first break; we allowed participants to ask
questions during these interruptions and do not report data from them. The robot was equipped
with a small box containing the blocks for its builds and a tablet, which provided instructions to
the robot builds.

During an entrance, the robot followed the path shown in Figure 12(a). It waited at the
observation point upon entering and after waiting—a random duration in RND, until 2.5 sec
of consecutive13 interruptible classifications in MDL, or until the wizard sent an interruptible
signal in WOZ—chose to move toward the participant. Upon arrival, the robot verbally requested
assistance and waited for 2 min. Participants were aware of the wait duration and could accept
the interruption within the time limit by grabbing the tablet, at which point the robot waited
indefinitely until the build was completed. If the participants did not respond in 2 min, the robot
left the participant build area. Upon returning to the training area, the robot audibly requested
verification of the build (e.g., “Is this a correct build?”) from an experimenter. The experimenter
provided a Yes/No response on whether the interruption was built, prepared the next robot build
in the box, and sent the robot back in.

Post-Study: After the last build session, participants were asked to complete a post-study
questionnaire, and they were debriefed on the true purpose of the study and the deceptions that
we employed.

10.2 Hypotheses

Our central premise is that the robot in MDL and WOZ will interrupt at appropriate moments,
and that such interruptions will improve robot task performance and the social perceptions of the
robot compared to those metrics in RND. Based on results from HFE research (Section 2.2), we also
predict that human task performance will not be greatly affected. Specifically, we formulate:

H1 (RQ3) With an interruptibility classifier (MDL), the robot will interrupt fewer builds than
it would without the classifier (RND), waiting longer to interrupt when participants are
building and interrupting more quickly when they are idle. In addition, the robot with the
classifier will interrupt as many builds as a robot directed by a human (WOZ).

13Empirically, 2.5 sec of consecutive classifications at 2Hz worked well.
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H2 (RQ4) When the robot has interruptibility-aware behavior (MDL and WOZ), participant task
performance will not significantly differ from participant task performance when a robot
interrupts at random (RND).

H3 (RQ5) When the robot has interruptibility-aware behavior (MDL and WOZ), fewer of its
tasks will be ignored and it will not need to spend as much time awaiting human assistance
as it will when it interrupts at random (RND).

H4 (RQ6) Participants will perceive an interruptibility-aware robot (MDL and WOZ) as more
socially aware and considerate than one that interrupts at random (RND).

10.3 Measurements

Prior work in HCI and HFE quantifies task performance using metrics such as time on task [1, 33,
37, 40], the number of tasks completed [40], and task switching time [30, 33, 43]. We use similar
quantitative measures of human and robot performance, and 5-point Likert scale responses to
questions of participant opinions and participant background:

M1 (RQ3) Percentage of builds interrupted by robot; robot wait (to interrupt) time when par-
ticipant is on build; robot wait (to interrupt) time when participant is idle.

M2 (RQ4) Participant’s time idle; total number of tasks done.
M3 (RQ4/RQ5) Number of interruptions of the participant; number of interruptions ignored;

interruption lag, measured as the time between when the robot requests assistance and the
participant begins constructing the robot build; interruption duration, measured as the total
time the robot waits after it has requested assistance.

M4 (RQ6) Perceived appropriateness of timing;14 perception of robot’s considerateness
(workload-awareness).15

M5 (Control) Experience with building blocks; proficiency at multitasking; familiarity with
robots; motivation and anxiety during trial; difficulty of trial; predictability of robot inter-
ruptions. These measures instrumented factors that had the possibility to confound results
based on results in prior literature and our experience from the pilot studies.

Most quantitative measures were automatically logged from timestamps on the tablet and the
robot, but some discrepancies caused by unexpected participant behavior16 were corrected using
video from the external camera. For all trials, timestamps from the tablets are treated as ground
truths of participant interruptibility. In addition to the above metrics, we also allowed participants
to verbally elaborate on their choices and reasoning during post-study debriefing.

11 USER STUDY: RESULTS

In this section, we examine the results from our user study to draw conclusions on the effects of
interruptibility classification.

11.1 Analysis of Model-Driven Robot Behavior

We first evaluate the performance of the robot’s interruptibility model in the study setting and
explore metrics pertaining to the question, “Can we use measures of the robot’s behavior to show
that our models accurately estimate interruptibility online on a robot platform?” (RQ3). Our anal-
yses in this section are conducted using a one-way analysis of variance (ANOVA) with the study

14Q1: When the robot interrupted you, was it a good time to interrupt?
15Q2: Did the robot take your workload into consideration when asking for help?
16For example, ignoring a build on the main tablet, or picking up the robot tablet and then replacing it without completing

the robot build.
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Fig. 13. Data and analysis for results in Section 11.1. In Figures 13, 14, 15, and 16, asterisks indicate the level

of statistical significance after post-hoc tests: *p < .05, **p < .01, ***p < .001. Error bars in the bar charts

indicate the 95% confidence interval.

condition as an independent variable. The ANOVA is followed by post-hoc comparisons using
Tukey’s honest significant difference (HSD) test. Results for this section can be seen in Figure 13.

Results: We first examine the amount of time the robot waited at the observation point when
participants were busy or idle as an indication of moment-to-moment interruptibility classifier
accuracy. Concretely, we expect an accurate classifier to make the robot wait longer when a par-
ticipant is busy, and not as long when the participant is idle. Over the course of each of the 42
trials, the robot entered the manufacturing environment between 2–6 times when the partici-
pant was busy, and between 2–9 times when the participant was free. Of the robot entrances
when the participant was busy, the data shows a significant difference between the conditions
(F (2, 39) = 113,p = 6.0e−17), with the robot waiting longer, on average, (Tukey HSD, p = .014) in
MDL (M = 49.4, SD = 31.0) than in RND (M = 16.5, SD = 4.27), and longer (Tukey HSD, p < .001)
in WOZ (M = 175, SD = 40.2) than in MDL (Figure 13(a)). Of the robot entrances when the par-
ticipant was idle, there was again a significant difference between the conditions (F (2, 39) =
39.7,p = 4.0e−10), with the robot waiting less time, on average, (Tukey HSD, p < .001) in MDL
(M = 10.2, SD = 6.5) than in RND (M = 19.3, SD = 4.62), and less time (Tukey HSD, p = .0011) in
WOZ (M = 3.06, SD = 2.60) than in MDL (Figure 13(b)).

We next examine the percentage of interruptions per trial that occurred during a build. We ex-
pect that a more accurate interruptibility classifier will have a lower percentage of interruptions
in the middle of a build. As shown in Figure 13(c), the data from the 14 trials indicate a signifi-
cant difference between the conditions (F (2, 39) = 74.8,p = 4.5e−14), where the percentage is lower
(Tukey HSD, p < .001) in WOZ (M = .043, SD = .061) than in MDL (M = .32, SD = .13), and lower
(Tukey HSD, p = .013) in MDL than in RND (M = .41, SD = .065).

We observe significant differences between our two wizards in the above metrics. The conser-
vative wizard (wizard C) never interrupted a participant in the middle of a build (M = 0, SD = 0),
while the aggressive wizard (wizard A) preferred to interrupt as a participant completed their task,
sometimes catching them at the end of a build (M = .087, SD = .061). As a result, the robot’s wait
time at the observation point differs between the wizards. However, both wizards’ metrics are
closer to each other than to MDL or RND.

Summary: Our results support our hypothesis that an interruptibility model showcases behav-
ior indicating a tendency to interrupt participants at appropriate moments (H1). In this study, we
defined an appropriate interruption as one that occurs when the participant is idle and not engaged
on a tablet build. The above analyses show that the classification model results in appropriately
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Fig. 14. Data and analysis for results in Section 11.2.

timed interruptions, with a model-equipped robot approaching participants quickly when they are
free while waiting to approach when they are busy. Examining these metrics, it is clear that a robot
equipped with an interruptibility model is socially aware through its ability to use the model to
autonomously select appropriate times to engage with people. However, the robot controlled by a
wizard is the most interruptibility-aware, indicating that we still have room to improve the model
in order to achieve human-level accuracy.

11.2 Analysis of Human Task Performance

The results above validate that an interruptibility-aware robot has an increased likelihood of mak-
ing appropriately timed interruptions. In this section, we explore the effects that this change in
robot behavior has on human task performance. Specifically, we examine the metrics relevant to,
“How does interruptibility-aware robot behavior affect human task performance when a robot
regularly needs assistance?” (RQ4).

Results: We find that the self-reported rating of experience with building blocks (build ex-

perience) was a significant confounding factor in participant build proficiency. Correlating self-
reported experience to observed task performance, we observe most differences between those
who self-reported experience as 1 or 2 (low experience), and those who reported experience of 3
or higher (high experience). Participants with high and low experience were similarly distributed
between conditions, with 10 high, 4 low experience participants in RND and MDL, and 9 high, 5
low experience participants in WOZ. The following analyses control for build experience.

Idle Time: We assume that moments when the participant is idle are moments of lost produc-
tivity; even while the main builds are unavailable, the robot has tasks that can be completed. We,
therefore, wish to minimize participant idle time. For the 14 trials in each condition, a two-way
ANOVA with the study condition and build experience as independent variables shows a signif-
icant effect of study condition (F (2, 36) = 3.36,p = .046) and no significant effect of build experi-
ence (F (1, 36) = 1.95,p = .17). A post-hoc Tukey’s HSD reveals lower (p = .031) idle time in WOZ
(M = 957, SD = 143) than in RND (M = 1087, SD = 76.7), but no significant difference (p = .64)
between MDL (M = 1043, SD = 151) and RND, or between MDL and WOZ (p = .20) (Figure 14(a)).

Interruptions Encountered: In our study, the robot continually re-entered the building area to
interrupt, which resulted in participants that attended to interruptions quickly receiving more in-
terruptions. Therefore, the number of interruptions presented to a participant is an indication of
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Fig. 15. Data and analysis for results in Section 11.3.

the number of tasks that they encountered:17 another indicator of task performance. For the 14
trials in each condition, a two-way ANOVA with study condition and build experience shows a
significant effect of study condition (F (2, 36) = 7.63,p = .0017) and no significant effect of build
experience (F (1, 36) = 2.04,p = .16). A post-hoc Tukey’s HSD reveals a lower (p = .0031) num-
ber of interruptions encountered in WOZ (M = 8, SD = 1.47) than in RND (M = 9.93, SD = 1.38)
and a lower (p = .0044) number in WOZ than in MDL (M = 9.86, SD = 1.46), with no significant
difference (p = .99) between MDL and RND (Figure (14b)).

Interruptions Ignored: Participants were given the freedom to ignore robot interruptions during
the study. We expected such ignores to occur when participants were overwhelmed, and therefore
consider the number of interruptions ignored as a negative indicator of human task performance.
For the 14 trials in each condition, a Kruskal-Wallis test shows a significance of study condition
(H (2,N = 42) = 7.15,p = .028) and marginal effect of build experience (H (1,N = 42) = 2.95,p =
.086). A post-hoc pairwise Wilcoxon rank sum test with Benjamini & Hochberg [5] correction
reveals a lower number of interruptions ignored in WOZ (Mdn = 0) than in RND (Mdn = 1.5,
Post-hoc Wilcoxon, p = .033) or MDL (Mdn = 1, Post-hoc Wilcoxon, p = .033), with no significant
difference between MDL and RND (p = .94) (Figure 15(a)).

Tasks Completed: The final measure is the total number of tasks (builds + robot interruptions)
that were completed by participants during a trial. For the 14 trials in each condition, a two-
way ANOVA with study condition and build experience as independent variables finds a signifi-
cant effect of build experience (F (1, 36) = 14.9,p = .0004) and no significance with study condition
(F (2, 36) = 0.22,p = .8) (Figure 14(c)).

We again comment on the differences between our wizards. Although there is no difference
between the wizards in the amount of idle time, interruptions encountered, and tasks completed,
the wizard C’s interruptions were ignored less often (Mdn = 0) than wizard A’s (Mdn = 1).

Summary: The results above lead us to mixed conclusions regarding the effects of
interruptibility-aware robot behavior on human task performance (H2). Firstly, we find that idle
time is minimized by the awareness of interruptibility, with participants exposed to the perfect
interruptibility-aware robot in WOZ enjoying significantly less idle time than participants in RND.
An obvious cause of the reduced idle time is the robot’s behavior in waiting to interrupt partic-
ipants until they are free (Section 11.1), which in turn causes participants in WOZ to encounter
fewer tasks than participants in either MDL or RND. However, we find that waiting until partici-
pants are free leads to fewer interruption builds that are ignored, thereby offsetting the potential

17All participants received four tasks from the main tablet.
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cost to throughput incurred by presenting fewer tasks to people. Ultimately, we find the factors
relating to task throughput balance each other such that the total number of tasks completed by
humans is not significantly different due to interruptibility-aware behavior.

The tradeoff in the factors affecting task completion explain the similar throughput between
RND and WOZ, but they fail to explain the similarity in the task metrics between RND and MDL,
despite the results in Section 11.1 showing that the robot tended to wait longer and interrupted
fewer builds in MDL. This discrepancy is explained in part by the results from HFE research (Sec-
tion 2.2), which suggests the embodiment of the robot interruptions and the skill-based main task
contributed to unaffected task performance: it is likely that participants were able to optimize their
build process such that their performance remained unaffected on the metrics of task throughput
that we instrumented. With better instrumentation, future research has the potential to exam-
ine additional metrics of task performance, such as interruption resumption lag [30, 33, 43], which
should differ between RND and MDL according to the predictions of the Goal-Activation model [2].

In conclusion, we find that all three of our conditions achieved similar task throughput, sug-
gesting our participants maximized their potential throughput in our manufacturing environment.
However, the maximization came at the cost of robot tasks being ignored in the interruptibility-
unaware condition of RND. In fact, we find that the addition of interruptibility-aware behavior
(WOZ, in particular) greatly improved the efficiency of the robot, particularly with a reduction in
the number of its tasks that were ignored. This is explored further in the next section.

11.3 Analysis of Robot Task Performance

In this section, we examine metrics relevant to answering the question, “How does interruptibility-
aware robot behavior affect robot task performance when relying on humans for assistance?”
(RQ5). In answering the question, we make a distinction between the time spent by the robot
waiting at the observe point, and the time spent by the robot waiting in front of the participant’s
work table. We do not consider the observe time to be wasted time, as we assume that the robot
might find an alternative interruption candidate during this time in a different environment.

Results: Our conclusions are drawn from the number of interruptions that the robot presented
(Figure 14(b)), the number of those that were ignored (Figure 15(a)), and the delays incurred by
the robot by waiting on the human after it requested assistance. For the last metrics, we only
present analyses on interruptions initiated during a build.18 Our analyses use a Kruskal-Wallis test
on study conditions followed by post-hoc pairwise Wilcoxon rank-sum tests with Benjamini &
Hochberg correction.

The interruption duration is unproductive robot time spent waiting on the human’s assistance
and is therefore a measure of low productivity. We hypothesize that poorly timed interruptions
result in a longer interruption duration, and therefore more time wasted by a robot that needs
assistance. For the 14 trials in each condition, the data reveals a significant difference between
the study conditions (H (2,N = 42) = 10.8,p = .0046), with a shorter total interruption duration in
WOZ (Mdn = 277) than in MDL (Mdn = 414, Post-hoc Wilcoxon, p = .032) or in RND (Mdn = 426,
Post-hoc Wilcoxon, p = .0024) (Figure 15(b)).

The interruption lag is another metric of how long the robot had to wait on participants, and
is a better indicator of the effect of appropriate timing to the robot’s task delay because it is not
affected by a participant’s capability to build, or by whether the interruption was ignored. As
with interruption duration, higher interruption lag means more time wasted by a robot and lower

18The difference between the study conditions is most apparent in such interruptions. Kruskal-Wallis tests on robot delay

data from the interruptions when participants were observed idle show no significant effect of the study condition and

show instead a significant effect of participant build experience.
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Fig. 16. Data and analysis for results in Section 11.4.

efficiency. For the 42 trials, the data reveals a significant effect of study conditions (H (2,N = 42) =
11.4,p = .0034), with lower average lag in WOZ (Mdn = 17.0) than in MDL (Mdn = 43.0, Post-hoc
Wilcoxon, p = .033) or in RND (Mdn = 45.8, Post-hoc Wilcoxon, p = .0016) (Figure 15(c)).

We observe a significant difference between our wizards in interruption lag, with participants
showing lower lag with wizard C (Mdn = 10.1) than with wizard A (Mdn = 22.7). Meanwhile,
there is no significant difference between the wizards on the metric of interruption duration.

Summary: Our results support our hypothesis that interruptibility awareness has a positive
impact on robot task performance (H3). Not only is the robot able to accomplish the same
amount of work with fewer requests for assistance, but well-timed interruptions also reduce the
amount of time the robot has to wait on the participant to respond to its request, even when the
interruptibility-awareness might not be perfect (as in MDL). In summary, well-timed interruptions
allow a robot to operate more efficiently, completing tasks with fewer requests and in less time. In
the next section, we evaluate participants’ perception of such well-timed interruptions.

11.4 Analysis of Robot Impressions

Our results thus far show that the robot in the MDL and WOZ conditions succeeded in interrupting
participants more appropriately; that this behavior did not have significant impact on participant
task performance, but that it did improve robot task performance. Here, we evaluated our hypothe-
sis that participants have a higher opinion of interruptibility-aware robots (H4) using participants’
Likert scale responses to questions of interruption appropriateness and of robot timing (measures
M4, Cronbach’s α = 0.7). For our analyses, we used a Kruskal-Wallis test on study condition fol-
lowed by post-hoc pairwise Wilcoxon rank-sum tests with Benjamini & Hochberg correction. We
also dropped one of the 14 responses in the MDL condition because the participant spent less than
10 sec on the post-study questionnaire.

Results: For the 14 trials in each condition, the data reveals a significant difference (H (2,N =
42) = 21.1,p = 2.6e−5) in the scores of social perception between all three conditions, with par-
ticipants rating WOZ (Mdn = 9) the highest (p = .018), followed by MDL (Mdn = 7, p = .0062),
followed by RND (Mdn = 4). We did not observe any difference between our two wizards on the
score (Figure 16).

Summary: Our results support our hypothesis; participants had a higher opinion of the
robot in WOZ than in MDL, and a higher opinion of the robot in MDL than in RND. Post-study
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conversations with participants revealed interesting directions for future research on the social
perceptions of interruptibility-aware robots.

We found that participants were not always objective regarding the appropriateness of the in-
terruption timing (Q1), perhaps as a result of the relatively short time participants had with the
robot and the overall novelty of the robot interaction. A large portion of participants factored in
considerations of whether they thought they could finish a main build when the robot interrupted,
whether they needed a break from the main build, or whether interacting with the robot was just
more fun than working. Participants were also prone to misremembering their experience, with
notable examples where one participant did not remember experiencing any interruptions in the
middle of a build and another participant recalled a mistimed interruption in WOZ with wizard C,
despite contrary evidence in the video.

Additionally, we found that perception of the robot’s workload awareness and considerateness
(Q2) resulted in part from a different overall assessment of the robot’s nonverbal behavior. Several
participants in the MDL condition noted (1) the robot’s proclivity to wait when they were building,
(2) its ability to approach immediately when they were free, (3) the robot’s willingness to wait
silently in front of the table if they were busy, and (4) the robot’s head motion, all as evidence
of the robot’s intelligence. Note that only (1) and (2) differ across our study conditions, while the
wait behavior (3) and the head motion (4) are identical in all study conditions. However, none
of the RND or WOZ participants attributed any importance to (3) or (4). Instead, participants in
WOZ and RND reflected on the difficulty of the builds that were interrupted, and the appropriate
or inappropriate (respectively) time of the robot’s approach. These responses echo prior robotics
research [58] and highlight the potential of the interruption behaviors in ameliorating mistakes
in interruptibility classification, thereby presenting avenues for further interaction research for
interruption management with embodied robots that interrupt humans.

11.5 Conclusion

In conclusion, our results supporting H1 show that the interruptibility-aware system we developed
is effective at predicting interruptibility at high accuracy, and that, when using it, our robot inter-
rupts at more appropriate times than a robot without interruptibility awareness. The results further
validate that developing interruptibility-aware robotic systems is important to future deployments
of interactive autonomous systems. We find that human performance of skill-based tasks is not af-
fected by interruptions (H2), primarily because participants effectively regulate their workload by
ignoring the robot when too many tasks are given. Critically, however, interruptibility-aware be-
havior improves metrics associated with robot task performance (H3) by reducing the robot’s time
wasted on inappropriate interruptions. Finally, interruptibility-aware behavior improves humans’
perceptions of the robot’s social aptitude (H4).

12 INSIGHTS

In this article, we have described the first fielded mobile robotic system that classified human in-
terruptibility online based on social and contextual cues and without reliance on external sensors.
In developing the system, we found that the social signals of a person’s interruptibility can be
usefully augmented with the contextual cues to their interruptibility such as the objects they’re
using. We also found that temporal models, such as our LDCRF, proved to be more appropriate
than non-temporal models, such as our MLP and RF, for online classification on a robot. We then
evaluated our system in a user study to verify that developing interruptibility-aware robotic sys-
tems is important to future deployments of interactive autonomous systems.

Our research also highlights some of the complexities associated with interruptibility, such as
the fact that even the two wizards in our WOZ condition, who underwent identical training and
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instruction, did not entirely agree on the appropriate timing of interruptions. Many factors beyond
just social and contextual cues play a role in interruption timing, such as differences in person-
ality or simply the urgency of the task needing attention, and these should be explored in future
research. Continuing work is also needed to explore the causal mechanisms by which robot in-
terruptions might affect human performance and to model the optimal way for a robot to behave
during an interruption.
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